DISEÑOS CON DOS O MÁS FACTORES
ramiroylili5 de Diciembre de 2013
591 Palabras (3 Páginas)416 Visitas
DISEÑOS CON DOS O MÁS FACTORES.
En algunas ocasiones se está interesado en estudiar la influencia de dos (o más) factores tratamiento, para ello se hace un diseño de filas por columnas. En este modelo es importante estudiar la posible interacción entre los dos factores. Si en cada casilla se tiene una única observación no es posible estudiar la interacción entre los dos factores, para hacerlo hay que replicar el modelo, esto es, obtener k observaciones en cada casilla, donde k es el número de réplicas.
El modelo matemático de este diseño es:
Generalizar los diseños completos a más de dos factores es relativamente sencillo desde un punto de vista matemático, pero en su aspecto práctico tiene el inconveniente de que al aumentar el número de factores aumenta muy rápidamente el número de observaciones necesario para estimar el modelo. En la práctica es muy raro utilizar diseños completos con más de factores.
Un camino alternativo es utilizar fracciones factoriales que son diseños en los que se supone que muchas de las interacciones son nulas, esto permite estudiar el efecto de un número elevado de factores con un número relativamente pequeño de pruebas. Por ejemplo, el diseño en cuadrado latino, en el que se supone que todas las interacciones son nulas, permite estudiar tres factores de k niveles con solo k2 observaciones. Si se utilizase el diseño equilibrado completo se necesitan k3 observaciones.
Diseños factoriales a dos niveles.
En el estudio sobre la mejora de procesos industriales (control de calidad) es usual trabajar en problemas en los que hay muchos factores que pueden influir en la variable de interés. La utilización de experimentos completos en estos problemas tiene el gran inconveniente de necesitar un número elevado de observaciones, además puede ser una estrategia ineficaz porque, por lo general, muchos de los factores en estudio no son influyentes y mucha información recogida no es relevante. En este caso una estrategia mejor es utilizar una técnica secuencial donde se comienza por trabajar con unos pocos factores y según los resultados que se obtienen se eligen los factores a estudiar en la segunda etapa.
Los diseños factoriales 2k son diseños en los que se trabaja con k factores, todos ellos con dos niveles (se suelen denotar + y -). Estos diseños son adecuados para tratar el tipo de problemas descritos porque permiten trabajar con un número elevado de factores y son válidos para estrategias secuenciales.
Si k es grande, el número de observaciones que necesita un diseño factorial 2k es muy grande (n = 2k). Por este motivo, las fracciones factoriales 2k-p son muy utilizadas, éstas son diseños con k factores a dos niveles, que mantienen la propiedad de ortogonalidad de los factores y donde se suponen nulas las interacciones de orden alto (se confunden con los efectos simples) por lo que para su estudio solo se necesitan 2k-p observaciones (cuanto mayor sea p menor número de observaciones se necesita pero mayor confusión de efectos se supone).
En los últimos años Taguchi ha propuesto la utilización de fracciones factoriales con factores a tres niveles en problemas de control de calidad industrial
DISEÑO K
Las sumas de cuadrados para los (k-1)efectos polinomiales del factor forman una partición de la suma de cuadrados de los tratamientoscada uno con un grado de libertad y su significación estadística, puede ser comprobada comparando sus sumas de cuadrados con el cuadrado medio del error.El grado del polinomio lo determina el grado mas alto que para el cual éste sea estadísticamente significativo. Se desea ajustar el polinomio de menor grado posible que describa adecuadamente a los datos. Y=ΣαPi+ ε
...