Estadistica Ciencia
sandy123r19 de Septiembre de 2013
646 Palabras (3 Páginas)501 Visitas
ESTADÍSTICA
V.Abraira
Referencia bibliográfica
A.Pérez de Vargas, V.Abraira. Bioestadística. Centro de Estudios Ramón Areces. Madrid. 1996.
Definiciones
Conjunto de métodos científicos ligados a la toma, organización, recopilación, presentación y análisis de datos, tanto para la deducción de conclusiones como para tomar decisiones razonables de acuerdo con tales análisis.
Arte de la decisión en presencia de incertidumbre.
Ciencia que sirve para demostrar que dos personas han comido 1/2 pollo cada una, cuando en realidad una ha comido uno y la otra ninguno.
¿Por qué la estadística?
¿Usaron la estadística Galileo, Newton y Einstein?
En ciertas ciencias (Biología, Ciencias Humanas, algunos campos de la Física, ...) aparece el concepto de experimento aleatorio (experimento que repetido en las "mismas condiciones" no produce el mismo resultado) y asociado al mismo el de variable aleatoria.
Una variable no aleatoria (asociada al resultado de una experiencia que sí produce el mismo resultado) está caracterizada por un valor para cada condición.
Una variable aleatoria está caracterizada por la llamada función densidad de probabilidad, a partir de la cual se obtienen las probabilidades para sus posibles valores para cada condición.
Los objetivos de la investigación científica se pueden entender, de un modo muy general, en términos de encontrar y describir las variables de interés y las relaciones entre ellas, para el problema en estudio.
La estadística es la ciencia que estudia los métodos que permiten realizar este proceso para variables aleatorias. Estos métodos permiten resumir datos y acotar el papel de la casualidad (azar).
Se divide en dos áreas:
Estadística descriptiva: Trata de describir las variables aleatorias en las "muestras".
Estadística inductiva o inferencial: Trata de la generalización hacia las poblaciones de los resultados obtenidos en las muestras y de las condiciones bajo las cuales estas conclusiones son válidas. Se enfrenta básicamente con dos tipos de problemas:
Estimación, que puede ser puntual o por intervalos.
Contraste de hipótesis.
ESTADISTICA DESCRIPTIVA
La descripción completa de una variable aleatoria está dada por su función densidad de probabilidad (fdp).
Afortunadamente una gran cantidad de variables de muy diversos campos están adecuadamente descritas por unas pocas familias de fdps: binomial, Poisson, normal, gamma, etc.
Dentro de cada familia, cada fdp está caracterizada por unos pocos parámetros, típicamente dos: media y varianza.
Por tanto la descripción de una variable indicará la familia a que pertenece la fdp y los parámetros correspondientes.
Ejemplo: (hipotético) la concentración de glucosa en sangre en individuos no diabéticos, medida en mg/dl, es normal con media 98 y varianza 90.
El problema es ¿cómo averiguar la fdp de una variable de interés?
La familia, generalmente, se sabe por resultados de la teoría de la probabilidad, aunque, en cada caso, conviene verificarlo. Para conocer los parámetros se deberían conocer los resultados de todos los posibles experimentos (población: conjunto de todos los valores de una variable aleatoria). Generalmente la población es inaccesible, bien es infinita, o aunque finita suficientemente grande para ser inabordable. En consecuencia, se estudian muestras (subconjuntos de la población) que, en caso de ser aleatorias, permiten realizar estimaciones tanto de la familia como de los parámetros de las fdps.
Muestra
...