ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Geometria De La Vida

maritzac21 de Octubre de 2011

631 Palabras (3 Páginas)586 Visitas

Página 1 de 3

La geometría en la vida

Línea

En geometría, una línea es una sucesión continua de infinitos puntos. Es una figura geométrica que sólo tiene una dimensión: longitud. Cada línea tiene dos sentidos y una dirección.

Tipos

Pueden ser 5 tipos lineales:

Planas (dos dimensiones)

• Línea recta, la sucesión continúa de puntos en una misma dirección.

• Línea curva, de formas redondeadas, con uno o varios centros de curvatura.

• Línea quebrada o poligonal, formada por segmentos rectos consecutivos no alineados, presentando puntos angulosos.

• poligonal abierta, si no están unidos el primero y último segmentos.

• poligonal cerrada, si cada segmento está unido a otros dos.

• Línea mixta, una combinación de una línea recta y una curva.

• Toda línea es un trazo a través del punto.

Segmento

Un segmento, en geometría, es un fragmento de recta que está comprendido entre dos puntos.

Así, dados dos puntos A y B, se le llama segmento AB a la intersección de la semirrecta de origen A que contiene al punto B, y la semirrecta de origen B que contiene al punto A. Luego, los puntos A y B se denominan extremos del segmento, y los puntos de la recta a la que pertenece el segmento (recta sostén), serán interiores o exteriores al segmento según pertenezcan o no a este.

Segmentos consecutivos

Dos segmentos son consecutivos cuando tienen en común únicamente un extremo. Según pertenezcan o no a la misma recta, se clasifican en:

• Colineales

• No colineales

Los segmentos consecutivos no colineales, llamados poligonal o quebrada, pueden ser abiertos o cerrados según tengan o no extremos comunes el primer y el último segmento que lo forman. Las poligonales cerradas forman polígonos. El segmento es una línea.

Los segmentos como cantidades

El conjunto de los segmentos métricos, constituye una magnitud, de la que los segmentos son cantidades. Es posible determinar entre ellos relaciones y efectuar las operaciones definidas para los elementos de una magnitud:

Comparación de segmentos

Postulado de las tres posibilidades (Ley de Tricotomía): Dados dos segmentos, debe verificarse una y solo una de las tres posibilidades siguientes:

• Los segmentos son iguales

• El primero es mayor que el segundo

• El primero es menor que el segundo

Posibilidades que se excluyen y se completan, es decir que al cumplirse una deja de cumplirse las restantes, y fuera de ellas no existe posibilidad alguna.

Igualdad de segmentos

La igualdad de segmentos, verificable por superposición, goza de las siguientes propiedades:

• Idéntica, reflexiva o refleja: Cualquier segmento es igual a sí mismo.

• Recíproca o simétrica: Si un segmento es congruente con otro, aquel es congruente con el primero.

Desigualdad

La desigualdad de segmentos, goza de la propiedad transitiva para las relaciones de mayor y de menor.

Operaciones

Se distinguen las siguientes operaciones:

Suma

La suma de varios segmentos consecutivos colineales, da por resultado el segmento determinado por los extremos no comunes de los segmentos considerados. Geométricamente, la suma de segmentos es otro segmento que se obtiene construyendo colinealmente segmentos ordenadamente congruentes con los dados, y procediendo como se indica al principio.

Suma de segmentos.

La suma de dos segmentos es otro segmento que tiene por inicio el origen del primer segmento y como final el final del segundo segmento.

La longitud del segmento suma es igual a la suma de las longitudes de los dos segmentos que lo forman.

Los ángulos

Un ángulo

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com