ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

LABORATORIOS DE FISICO

danicita78 de Septiembre de 2013

4.614 Palabras (19 Páginas)406 Visitas

Página 1 de 19

FOTOCELULAS

1.-Definicion

Célula fotoeléctrica Una célula fotoeléctrica, también llamada célula, fotocélula o celula fotovoltaica, es un dispositivo electrónico que permite transformar la energía luminosa (fotones) en energía eléctrica (flujo de electrones libres) mediante el efecto fotovoltaico.

Compuestos de un material que presenta efecto fotoeléctrico: absorben fotones de luz y emiten electrones. Cuando estos electrones libres son capturados, el resultado es una corriente eléctrica que puede ser utilizada como electricidad.

La eficiencia de conversión media obtenida por las células disponibles comercialmente (producidas a partir de silicio monocristalino) está alrededor del 11-12%, pero según la tecnología utilizada varía desde el 6% de las células de silicio amorfo hasta el 14-19% de las células de silicio monocristalino. También existen Las células multicapa, normalmente de Arseniuro de galio, que alcanzan eficiencias del 30%. En laboratorio se ha superado el 42% con nuevos paneles experimentales.

La vida útil media a máximo rendimiento se sitúa en torno a los 25 años, período a partir del cual la potencia entregada disminuye.

Al grupo de células fotoeléctricas para energía solar se le conoce como panel fotovoltaico. Los paneles fotovoltaicos consisten en una red de células solares conectadas como circuito en serie para aumentar la tensión de salida hasta el valor deseado (usualmente se utilizan 12V ó 24V) a la vez que se conectan varias redes como circuito paralelo para aumentar la corriente eléctrica que es capaz de proporcionar el dispositivo.

El tipo de corriente eléctrica que proporcionan es corriente continua, por lo que si necesitamos corriente alterna o aumentar su tensión, tendremos que añadir un inversor y/o un convertidor de potencia

Fig 1.-Celda fotovoltaica policristalina solar de 4 pulgadas.

2.-Principio de funcionamiento

En un semiconductor expuesto a la luz, un fotón de energía arranca un electrón, creando al pasar un «hueco». Normalmente, el electrón encuentra rápidamente un hueco para volver a llenarlo, y la energía proporcionada por el fotón, pues, se disipa. El principio de una célula fotovoltaica es obligar a los electrones y a los huecos a avanzar hacia el lado opuesto del material en lugar de simplemente recombinarse en él: así, se producirá una diferencia de potencial y por lo tanto tensión entre las dos partes del material, como ocurre en una pila.

Para ello, se crea un campo eléctrico permanente, a través de una unión pn, entre dos capas dopadas respectivamente, p y n:

Fig 2.-Estructura de una célula fotovoltaica.

• La capa superior de la celda se compone de silicio dopado de tipo n.1 En esta capa, hay un número de electrones libres mayor que una capa de silicio puro, de ahí el nombre del dopaje n, como carga negativa (electrones). El material permanece eléctricamente neutro: es la red cristalina quien tiene globalmente una carga negativa.

• La capa inferior de la celda se compone de silicio dopado de tipo p.2 Esta capa tiene por lo tanto una cantidad media de electrones libres menor que una capa de silicio puro, los electrones están ligados a la red cristalina que, en consecuencia, está cargada positivamente. La conducción eléctrica está asegurada por los huecos, positivos (p).

En el momento de la creación de la unión pn, los electrones libres de la capa n entran en la capa p y se recombinan con los huecos en la región p. Existirá así durante toda la vida de la unión, una carga positiva en la región n a lo largo de la unión (porque faltan electrones) y una carga negativa en la región en p a lo largo de la unión (porque los huecos han desaparecido); el conjunto forma la «Zona de Carga de Espacio» (ZCE) y existe un campo eléctrico entre las dos, de n hacia p. Este campo eléctrico hace de la ZCE un [diodo]], que solo permite el flujo de corriente en una dirección: los electrones pueden moverse de la región p a la n, pero no en la dirección opuesta y por el contrario los huecos no pasan más que de n hacia p.

En funcionamiento, cuando un fotón arranca un electrón a la matriz, creando un electrón libre y un hueco, bajo el efecto de este campo eléctrico cada uno va en dirección opuesta: los electrones se acumulan en la región n (para convertirse en polo negativo), mientras que los huecos se acumulan en la región dopada p (que se convierte en el polo positivo). Este fenómeno es más eficaz en la (ZCE), donde casi no hay portadores de carga (electrones o huecos), ya que son anulados, o en la cercanía inmediata a la (ZCE): cuando un fotón crea un par electrón-hueco, se separaron y es improbable que encuentren a su opuesto, pero si la creación tiene lugar en un sitio más alejado de la unión, el electrón (convertido en hueco) mantiene una gran oportunidad para recombinarse antes de llegar a la zona n (resp. la zona p). Pero la ZCE es necesariamente muy delgada, así que no es útil dar un gran espesor a la célula.3

En suma, una célula fotovoltaica es el equivalente de un Generador de Energía a la que hemos añadido un diodo.

Es preciso añadir contactos eléctricos (que permitan pasar la luz: en la práctica, mediante un contacto de rejilla, una capa antireflectante para garantizar la correcta absorción de fotones, etc.

Para que la célula funcione, y produzca la potencia máxima de corriente se le añade la banda prohibida de los semiconductores a nivel de energía de los fotones. Es posible aumentar las uniones a fin de explotar al máximo el espectro de energía de los fotones, lo que produce las células multijuntas.

3.-Técnica de fabricación

El silicio es actualmente el material más comúnmente usado para la fabricación de células fotovoltaicas. Se obtiene por reducción de la sílice, compuesto más abundante en la corteza de la Tierra, en particular en la arena o el cuarzo.

El primer paso es la producción de silicio metalúrgico, puro al 98%, obtenido de pedazos de piedras de cuarzo provenientes de un filón mineral (la técnica de producción industrial no parte de la arena).El silicio se purifica mediante procedimientos químicos (Lavado + Decapado) empleando con frecuencia destilaciones de compuestos clorados de Silicio, hasta que la concentración de impurezas es inferior al 0.2 partes por millón. Así se obtiene el Silicio grado semiconductor con un grado de pureza superior al requerido para la generación de Energía Solar Fotovoltaica. Este ha constituido la base del abastecimiento de materia prima para aplicaciones solares hasta la fecha, representando en la actualidad casi las tres cuartas partes del aprovisionamiento de las industrias.

Sin embargo, para usos específicamente solares, son suficientes (dependiendo del tipo de impureza y de la técnica de cristalización), concentraciones de impurezas del orden de una parte por millón. Al material de esta concentración se le suele denominar Silicio de grado solar.

Con el silicio fundido, se realiza un proceso de crecimiento cristalino que consiste en formar capas monomoleculares alrededor de un germen de cristalización o de un cristalito inicial. Nuevas moléculas se adhieren preferentemente en la cara donde su adhesión libera más energía. Las diferencias energéticas suelen ser pequeñas y pueden ser modificadas por la presencia de dichas impurezas o cambiando las condiciones de cristalización. La semilla o gérmen de cristalización que provoca este fenómeno es extraída del silicio fundido, que va solidificando de forma cristalina, resultando, si el tiempo es suficiente, un monocristal y si es menor, un policristal. La temperatura a la que se realiza este proceso es superior a los 1500 °C .

El procedimiento más empleado en la actualidad es el Proceso Czochralski, pudiéndose emplear también técnicas de colado. El Silicio cristalino así obtenido tiene forma de lingotes.

Estos lingotes son luego cortados en láminas delgadas cuadradas (si es necesario) de 200 micrómetros de espesor, que se llaman «obleas». Después del tratamiento para la inyección del enriquecido con dopante (P, As, Sb o B) y obtener así los semiconductores de silicio tipo P o N.

Después del corte de las obleas, las mismas presentan irregularidades superficiales y defectos de corte, además de la posibilidad de que estén sucias de polvo o virutas del proceso de fabricación. Esta situación puede disminuir considerablemente el rendimiento del panel fotovoltaico así que se realizan un conjunto de procesos para mejorar las condiciones superficiales de las obleas tales como un lavado preliminar, la eliminación de defectos por ultrasonidos, el decapado, el pulido o la limpieza con productos químicos. Para las celdas con más calidad (monocristal) se realiza un tratado de texturizado para hacer que la oblea absorba con más eficiencia la radiación solar incidente.

Posteriormente, las obleas son «metalizadas», un proceso que consiste en la colocación de unas cintas de metal incrustadas en la superficie conectadas a contactos eléctricos que són las que absorben la energía elecrica que generan las uniones P/N a causa de la irradicación solar y la transmiten.

La producción de células fotovoltaicas requiere energía, y se estima que un módulo fotovoltaico debe trabajar alrededor de 2 a 3 años4 según su tecnología para producir la energía que fue necesaria para su producción (módulo de retorno de energía).

Las técnicas de fabricación y características de los principales tipos de células se describen en los siguientes 3 párrafos. Existen otros tipos de células que están en estudio, pero su uso es casi insignificante.

Los materiales

...

Descargar como (para miembros actualizados) txt (30 Kb)
Leer 18 páginas más »
Disponible sólo en Clubensayos.com