ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

La Evolucion De Las Estrellas


Enviado por   •  27 de Agosto de 2012  •  2.248 Palabras (9 Páginas)  •  683 Visitas

Página 1 de 9

ESTRELLA

En un sentido general, puede afirmarse que una estrella es todo objeto astronómico que brilla con luz propia. Adecuadamente, de un modo más técnico y preciso, podría decirse que se trata de una esfera de plasma, que mantiene su forma gracias a un equilibrio de fuerzas denominado equilibrio hidrostático. El equilibrio se produce esencialmente entre la fuerza de gravedad, que empuja la materia hacia el centro de la estrella, y la presión que hace el plasma hacia fuera, que tal como sucede en un gas, tiende a expandirlo. La presión hacia fuera depende de la temperatura, que en un caso típico como el Sol, se mantiene con el suministro de energía producida en el interior de la estrella. Por ello, el equilibrio se mantendrá esencialmente en las mismas condiciones, en la medida en que la estrella mantenga el ritmo de producción energética. Pero dicho ritmo, como se explica luego, cambia a lo largo del tiempo, generando variaciones en las propiedades físicas globales del astro, que se conocen como evolución de la estrella.

Ciclo de vida

Mientras las interacciones se producen en el núcleo, éstas sostienen el equilibrio hidrostático del cuerpo y la estrella mantiene su apariencia iridiscente predicha por Niels Bohr en la teoría de las órbitas cuantificadas. Cuando parte de esas interacciones (la parte de la fusión de materia) se prolonga en el tiempo, los átomos de sus partes más externas comienzan a fusionarse. Esta región externa, al no estar comprimida al mismo nivel que el núcleo, aumenta su diámetro. Llegado cierto momento, dicho proceso se paraliza, para contraerse nuevamente hasta el estado en el que los procesos de fusión más externos vuelven a comenzar y nuevamente se produce un aumento del diámetro. Estas interacciones producen índices de iridiscencia mucho menores, por lo que la apariencia suele ser rojiza. En esta etapa el cuerpo entra en la fase de colapso, en la cual las fuerzas en pugna —la gravedad y las interacciones de fusión de las capas externas— producen una constante variación del diámetro, en la que acaban venciendo las fuerzas gravitatorias cuando las capas más externas no tienen ya elementos que fusionar.

Se puede decir que dicho proceso de colapso finaliza en el momento en que la estrella no produce fusiones de material, y dependiendo de su masa total, la fusión entrará en un proceso degenerativo al colapsar por vencer a las fuerzas descritas en el principio de exclusión de Pauli, produciéndose una supernova.

COMPOCISION

La composición química de una estrella varía según la generación a la que pertenezca. Cuanto más antigua sea más baja será sumetalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella. Estos porcentajes son en masa; en número de núcleos, la relación es 90% de hidrógeno y 10% de helio.

En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman parte de la población II. Normalmente la metalicidad va directamente relacionada con la edad de la estrella. A más elementos pesados más vieja es la estrella.

La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.

PQ BRILLAN LAS ESTRELLAS ?

Las estrellas son tan enormes que por su propio peso se comprimen y generan altas presiones y temperaturas,los nucleos de hidrogeno chocan y se fusionan liberando enormes cantidades de energía y luz asi es donde las estrellas dan luz propia por la combustión de su propia materia.

Su luz nos llega como un brillo suave, a causa de la gran distancia a que se encuentran de nosotros. Esta distancia es tan enorme que la unidad que se toma para su medición es el “año luz”, equivalente a la distancia que recorre la luz durante un año en el vacío.

FORMACIÓN Y EVOLUCIÓN DE LAS ESTRELLAS

Las estrellas se forman en las regiones más densas de las nubes moleculares como consecuencia de las inestabilidades gravitatorias causadas, principalmente, por supernovas o colisiones galácticas. El proceso se acelera una vez que estas nubes de hidrógeno molecular (H2) empiezan a caer sobre sí mismas, alimentado por la cada vez más intensaatracción gravitatoria. Su densidad aumenta progresivamente, siendo más rápido el proceso en el centro que en la periferia. No tarda mucho en formarse un núcleo en contracción muy caliente llamado protoestrella. El colapso en este núcleo es, finalmente, detenido cuando comienzan las reacciones nucleares que elevan la presión y temperatura de la protoestrella. Una vez estabilizada la fusión del hidrógeno, se considera que la estrella está en la llamada secuencia principal, fase que ocupa aproximadamente un 90% de su vida. Cuando se agota el hidrógeno del núcleo de la estrella, su evolución dependerá de la masa (detalles en evolución estelar) y puede convertirse en una enana blanca o explotar como supernova, dejando también un remanente estelar que puede ser una estrella de neutrones o un agujero negro. Así pues, la vida de una estrella se caracteriza por largas fases de estabilidad regidas por la escala de tiempo nuclear separadas por breves etapas de transición dominadas por la escala de tiempo dinámico (véase Escalas de tiempo estelar).

Finalmente, al morir la estrella se produce en la mayoría de los casos unanebulosa planetaria, una supernova o una hipernova por la cual se expulsa aún más materia al espacio interestelar. La materia expulsada incluye elementos pesados producidos en la estrella que más tarde formarán nuevas estrellas y planetas, aumentando así la metalicidad del Universo.

NUBE MOLECULAR

Una nube molecular es una región

...

Descargar como (para miembros actualizados)  txt (14.2 Kb)  
Leer 8 páginas más »
Disponible sólo en Clubensayos.com