ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Limite Matematico

ronaldito657426 de Agosto de 2013

577 Palabras (3 Páginas)693 Visitas

Página 1 de 3

Límite matemático

Saltar a: navegación, búsqueda

En matemática, el límite es un concepto que describe la tendencia de una sucesión o una función, a medida que los parámetros de esa sucesión o función se acercan a determinado valor. En cálculo (especialmente en análisis real y matemático) este concepto se utiliza para definir los conceptos fundamentales de convergencia, continuidad, derivación, integración, entre otros.

El concepto se puede generalizar a otros espacios topológicos, como pueden ser las redes topológicas; de la misma manera, es definido y utilizado en otras ramas de la matemática, como puede ser la teoría de categorías.

Para fórmulas, el límite se utiliza usualmente de forma abreviada mediante lim como en lim(an) = a o se representa mediante la flecha (→) como en an → a.

Límite de una función

Visualización de los parámetros utilizados en la definición de límite.

Artículo principal: Límite de una función.

En análisis real para funciones de una variable, se puede hacer una definición de límite similar a la de límite de una sucesión, en la cual, los valores que toma la función dentro de un intervalo se van aproximando a un punto fijado c, independientemente de que éste pertenezca al dominio de la función. Esto se puede generalizar aún más a funciones de varias variables o funciones en distintos espacios métricos.

Informalmente, se dice que el límite de la función f(x) es L cuando x tiende a c, y se escribe:

si se puede encontrar para cada ocasión un x suficientemente cerca de c tal que el valor de f(x) sea tan próximo a L como se desee.

Para un mayor rigor matemático se utiliza la definición épsilon-delta de límite, que es más estricta y convierte al límite en una gran herramienta del análisis real. Su definición es la siguiente:

"El límite de f(x) cuando x tiende a c es igual a L si y sólo si para todo número real ε mayor que cero existe un número real δ mayor que cero tal que si la distancia entre x y c es menor que δ, entonces la distancia entre la imagen de x y L es menor que ε unidades".

Esta definición, se puede escribir utilizando términos lógico-matemáticos y de manera compacta:

Límite de una función

Saltar a: navegación, búsqueda

El límite de una función es un concepto fundamental del análisis matemático, un caso de límite aplicado a las funciones.

Informalmente, el hecho que una función f tiene un límite L en el punto c, significa que el valor de f puede ser tan cercano a L como se desee, tomando puntos suficientemente cercanos a c, independientemente de lo que ocurra en c.

Límites laterales

El límite cuando: x → x0+ ≠ x → x0-. Por lo tanto, el límite cuando x → x0 no existe.

De manera similar, x puede aproximarse a c tomando valores más grandes que éste (derecha):

o tomando valores más pequeños (izquierda), en cuyo caso los límites pueden ser escritos como:

Si los dos límites anteriores son iguales:

entonces L se pueden referir como el límite de f(x) en c. Dicho de otro modo, si estos no son iguales a L entonces el límite, como tal, no existe.

Propiedades de los límites

Propiedades generales

Si f(x) y g(x) son funciones de variable real y k es un escalar, entonces, se cumplen las siguientes propiedades:

Límite de Expresión

Una constante

La función identidad

El producto de una función y una constante

Una suma

Una resta

Un producto

Un cociente

Una potencia

Un logaritmo

El número e

Función f(x) acotada

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com