ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Matematica Financiera


Enviado por   •  8 de Abril de 2014  •  4.555 Palabras (19 Páginas)  •  285 Visitas

Página 1 de 19

TRABAJO DE MATEMATICAS FINANCIERA

VALLEDUPAR

UPC

2013

INTRODUCION

Una tasa interés la tasa de interés es el precio del dinero, el cual se debe pagar/cobrar por tomarlo prestado/cederlo en préstamo en una situación determinada. Por ejemplo, si las tasas de interés fueran la mismas tanto para depósitos en bonos del Estado, cuentas bancarias a largo plazo e inversiones en un nuevo tipo de industria, nadie invertiría en acciones o depositaría en un banco. Tanto la industria como el banco pueden ir a la bancarrota, un país no.

TABLA DE CONTENIDO pag

Tasa de interés continúa 1

4

Tasa de Evaluacion 6

Tasa de cambio

Divisa 8

TASA DE INTERÉS CONTINUA

Se define una tasa de interés continua r% como aquella cuyo periodo de capitalización es lo más pequeño posible. Por ejemplo, se habla del 35% capitalizable continuamente, lo cual significa que es una tasa expresada anualmente y su periodo de capitalización puede ser lo más pequeño posible. En términos matemáticos, esto quiere decir que el número de periodos de capitalización durante el tiempo de la operación financiera crece indefinidamente. A diferencia del interés discreto, en el interés continuo la tasa se presenta siempre en forma nominal.

Vamos a determinar la equivalencia entre el valor presente y el valor futuro por una inversión única con interés continuo. Si hoy invertimos una cantidad de $P, a una tasa de interés continuo del r% capitalizable continuamente durante n años, vamos a determinar el valor futuro o total acumulado $F, al final de ese tiempo.

Si denotamos por ∆t el periodo de capitalización, por C(t) el capital al final del tiempo t y por C(t + ∆t) el capital al final del tiempo t + ∆t, se tiene que el interés devengado en el periodo t está dado por:

C(t) * r * ∆t

En el siguiente diagrama puede verse más claramente la relación entre estos valores y el tiempo:

F

0 C(t) C(t + ∆t) n

t t + ∆t

de tal manera que se cumple la siguiente relación:

C(t + ∆t) = C(t) + C(t)* r * ∆t

o lo que es lo mismo:

C(t + ∆t) - C(t) = C(t) * r

∆t

Para que la capitalización sea continua se requiere que ∆t 0, de tal manera que debe cumplirse:

Lim C(t + ∆t) - C(t) = Lim C(t) * r

∆t 0 ∆t ∆t 0

La expresión de la izquierda es la definición de la derivada de C(t) respecto a t, y así tenemos:

dC = C * r

dt

Esta relación corresponde a una ecuación diferencial de variables separables, cuya solución se plantea así:

Para llegar a:

F = P* e rn ecuación 1

Y también:

P = F * e-rn ecuación 2

Las formulas 1 y 2 relacionan el valor presente y el valor futuro de un pago único con interés continuo.

Ejemplo 1.

Una persona deposita hoy una suma de dinero de $P, en una institución financiera que paga un interés del 27% anual capitalizable continuamente. Si el saldo a favor del inversionista es de $ 855000 dentro de 3 años, hallar la cantidad depositada originalmente.

Solución.

En este caso tenemos:

F = 855000; n = 3 años; r% = 27% anual capitalizable continuamente; P = ¿?

Aplicando la ecuación 2, obtenemos:

P = 855000 * e –(0.27 * 3) = 855000 * e –0.81 = $ 380354

Con base en las ecuaciones 1 y 2 es posible determinara cualquiera de las variables P, F, r ó n, según el caso.

Ejemplo 2.

Al cabo de cuánto tiempo una inversión de $ 420000 se convierte en $ 1’465944, si el rendimiento del dinero es del 25% nominal capitalizable continuamente?

Solución.

...

Descargar como (para miembros actualizados)  txt (23.6 Kb)  
Leer 18 páginas más »
Disponible sólo en Clubensayos.com