Métodos Numéricos Colaborativo Dos
edquintero00425 de Abril de 2014
407 Palabras (2 Páginas)194 Visitas
4. Se tienen los siguientes datos para que halle un polinomio P(x) de grado desconocido, con el método de Diferencias divididas de Newton:
X 0 1 2 3
F(x) 1 6 8 12
Y con la ecuación o polinomio que logre aproxime el valor de P (1.7).
Según la tabla de datos 〖(x〗_0 ,x_1,x_2,x_3 ) el polinomio p(x) será de grado 3 (n=3)b
p(x)=b_0+(x-x_0 ) b_1+(x-x_0 )(x-x_1 ) b_2+(x-x_0 )(x-x_1 )(x-x_2 ) b_3
Calculamos 〖b_0,b〗_1,b_2,b_3
b_0=f(x_0 )=f(0)=1-------→ b_0=1
b_1=f(x_1,x_0 )=((x_1 )-f(x_0 ))/(x_1-x_0 ) =(f(1)-f(0))/(1-0)
b_1=(6-1)/(1-0) =5/1 =5------→b_1=5
b_2=f(x_2,x_1,x_0 )=((f(x_2 )-f〖(x〗_1))/(x_2-x_1 )-(f(x_1 )-f〖(x〗_0))/(x_1-x_0 ))/(x_2-x_0 )
b_2=((f(2)-f(1))/(2-1)-(f(1)-f(0))/(1-0))/(2-0)=((8-6)/(2-1)-(6-1)/(1-0))/(2-0)
b_2=(2/1-5/1)/2 =(2-5)/2= -3/2 -------→ b_2=-3/2
b_3=f(x_3,x_2,x_1,x_0 )=(f(x_3,x_2,x_1,)-f(x_2,x_1,x_0 )_ )/(x_3-x_0 )
b_3=((f(x_3,x_2 )-f〖(x〗_2,x_1))/(x_3-x_1 )-(f(x_(2,) x_1 )-f〖(x〗_1,x_0))/(x_2-x_0 ))/(x_3-x_0 )
b_3=(((f〖(x〗_3)-f〖(x〗_2) )/(x_3-x_2 ))-((f(x_2 )-f〖(x〗_1))/(x_2-x_1 )))/((x_3-x_1)/(〖 x〗_3-x_0 ))-(((f〖(x〗_2)-f〖(x〗_1) )/(x_2-x_1 ))-((f(x_1 )-f〖(x〗_0))/(x_1-x_0 )))/((x_2-x_0)/)
b_3=(((12-8 )/(3- 2 ))-((8-6)/(2-1)))/((3-1)/( 3-0 ))-(((8-6)/(2-1))-((6-1)/(1-0)))/((2-0)/)
b_3=(((4 )/(1 ))-(2/1))/(2/( 3 ))-((2/1)-(5/1))/(2/)
b_3=2/( 2/( 3 ))-(-3)/2=(2+3)/(2/3)= 5/(2/3) = 5/6
b_3= 5/6
El polinomio p(x) será:
p(x)=b_0+(x-x_0 ) b_1+(x-x_0 )(x-x_1 ) b_2+(x-x_0 )(x-x_1 )(x-x_2 ) b_3
p(x)=1+(x-0)(5)+(x-0)(x-1)(-3/2)(x-0)(x-1)(x-2)(5/6)
p(x)=1+5x-3/2 x(x-1)+5/6 (x)(x-1)(x-2)
p(x)=1+5x-( 3/2 〖 x〗^2 + 3/2 x) +(5/6 〖 x〗^2-5/6 x)(x-2)
p(x)=1+5x- 3/2 〖 x〗^2 + 3/2 x +5/6 〖 x〗^3-10/6 x^2-5/6 〖 x〗^2+10/6 x
p(x)=1+(5x+ 3/2 x + 10/6 x )+((-3)/2 〖 x〗^2-10/6 x^2-5/6 〖 x〗^2 )+5/6 x^3
p(x)=1+((30x+9x+10x)/6)+((-9x^2-10x^2-5x^2)/6)+5/6 x^3
p(x)=1+49/6 x-24/6 x^2+5/6 x^3
p(x)=1+49/6 x-4x^2+5/6 x^3
p(1.7)=1+49/6 (1.7)-4(〖1.7)〗^2+5/6 〖(1.7)〗^3
p(1.7)=1+13.883333-11.56+4.094167
p(1.7)=7.4175
...