ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

T-student

jcxmilo12 de Noviembre de 2012

3.208 Palabras (13 Páginas)1.236 Visitas

Página 1 de 13

DISTRIBUCIÓN t-STUDENT

Si (X,X1,X2,...,Xn) son n+1 variables aleatorias normales independientes de media 0 y varianza 2, la variable

tiene una distribución t-Student con n grados de libertad. Su función de densidad es

siendo la función gamma de Euler con P>0. La media de la distribución t-Student es E(X)=0 y su varianza V(X)=n/(n-2), la cual no existe para grados de libertad menores que 2.

Esta distribución aparece en algunos contrastes del análisis normal.

La distribución t-Student se construye como un cociente entre una normal Z~N(0,1) y la raíz de una Chi independientes. De modo preciso, llamamos distribución t-Student con n grados de libertad, tn a la de una variable aleatoria T,

y además,

Para calcular

Sea un estadígrafo t calculado para la media con la relación

Ejemplo, En 16 recorridos de prueba de una hora cada uno, el consumo de gasolina de un motor es de 16.4 gal, con una desviación estándar de 2.1 gal. Demuestre que la afirmación que el consumo promedio de gasolina de este motor es 12.0 gal/hora

Solución, Sustituyendo n=16, =12.0, =16.4 y s=2.1 en la formula de t-Student, se tiene

Para el cual en las tablas, para =5% y 15 gl es insignificante, y por tanto se puede concluir que el consumo de 12 gal/h es real

Ejemplo, Encuentre los valores de la función para:

a. 14 gl, =97.5%→t0.975=-t2.5%=-2.145

b. P(-t0.025<T<t0.05)=0.925

Si de una población normal, o aproximadamente normal, se extraen muestras aleatorias e independientes y a cada una se le calcula dicho estadígrafo usando los valores muéstrales de la media y el desviación estándar, entonces se obtiene una distribución muestralt. Esta función matemática tiene un parámetro que la define en forma unívoca: el número de grados de libertad υ=n-1 (donde nes el tamaño muestral). El concepto matemático de υ está relacionado con la cantidad de observaciones independientes que se hagan y se calcula con el tamaño muestraln, menos la cantidad kde parámetros poblacionales que deban ser estimados a través de ellas. O sea: υ=n.k. Si se observa la ecuación superior, se ve que el único parámetro poblacional que figura es μ, por lo tanto k=1 y así resulta υ=n.1. Cuando el tamaño muestral es mayor que 30 la distribución de t-Student se aproxima mucho a la de Gauss, en el límite ambas son iguales.

Es decir que la función t-Student tiende asintóticamente a la función de Gauss. Para cada grado de libertad hay una tabla de valores que pueden obtenerse variando el nivel de significación, parecida a la de Gauss. La distribución de t-Student, al igual que la de Gauss, es simétrica respecto al origen de coordenadas y se extiende desde – ∞ hasta + ∞. Pero a diferencia de la normal, puede adoptar diferentes formas dependiendo del número de grados de libertad. Por ejemplo, la que tiene un solo grado de libertad (n=2 y υ=1), se desvía marcadamente de la normal, como se puede ver en la figura anterior. Luego, a medida que los grados van aumentando, se acerca cada vez más, hasta igualarla en el infinito.

Los intervalos de confianza para esta distribución se arman en forma análoga a la vista para el caso de Gauss. Con la única diferencia en cómo se calcula el valor crítico tα;υ en lugar de zα.

La teoría de decisiones se usa en forma análoga, empleando los intervalos de confianza visto más arriba. Pero para poder aplicar este modelo se deben tener en cuenta los requisitos siguientes:

- Las muestras fueron extraídas de una población normal o aproximadamente normal.

- La selección de las muestras se hizo en forma aleatoria.

- Las muestras son independientes entre sí.

Si alguno de ellos no se cumple, las conclusiones que se obtengan no son válidas. Los supuestos se pueden resumir así: para poder usar t-Student, se deben tener muestras normales, aleatorias e independientes. Notar que el error estándar de estimación es σe.

- t-Student para medias muestrales. En este caso e =.x luego: μe=μ y σe2=s2/n . Por lo tanto el valor de comparación se calcula,

Ejemplo. Se desea saber si un instrumento de medición cualquiera está calibrado, desde el punto de vista de la exactitud. Para ello se consigue un valor patrón y se lo mide 10 veces (por ejemplo: una pesa patrón para una balanza, un suero control para un método clínico, etc.). Suponiendo que el resultado de estas mediciones arroja una media de 52,9 y una desviación de 3, usando un patrón de valor 50, se debe determinar si el instrumento está calibrado y la estimación de su error sistemático, si es que se prueba su existencia (no se usan unidades para generalizar este ejemplo).

Ho := 50 el instrumento está calibrado en exactitud

H1 :≠50 no está calibrado. Hay un error sistemático

Se trata de un ensayo de dos colas donde hay =10–1=9 grados de libertad. De la Tabla t-Student se obtienen los valores críticos para el 95% de t0,0592,262, para el 99% de t 0,0193,25 y para un nivel del 99,9% es t0,00194,781. Lo que permite establecer las zonas de aceptación y rechazo:

Dibujando las zonas con los valores críticos, el valor de t cae en la de rechazo para el 95% y no alcanza para las otras. La conclusión es que se ha probado la existencia de un error sistemático con una confianza del 95%.

Ejemplo. Se midió colesterol total a 11 pacientes varones adultos escogidos al azar los resultados obtenidos arrojan una media de 235 mg/dl y un desviación estándar de 35 mg/dl. Ensayar la hipótesis de que se mantienen por debajo del valor límite de referencia de 220 mg/dl

.

Ho: ≤220 mg/dl

H1: ≥220 ,g/dl

El valor t-Student para una sola cola es,

Valor no significativo pues t0.05,10=1.81, entonces  cae dentro del intervalo del 95%

Para el caso de una cola, el valor de tablas para el 95% debe ser el que está en la Tabla t-Student para el 90% en dos colas. La idea es que el 10% en dos colas significa el 5% en cada una, por la simetría de la curva de t-Student. Luego, para =10, el límite para el 95% será t = 1,812 en una cola y t = 2,228 para dos colas. La conclusión es que no puede rechazar la hipótesis nula, por lo que debe considerarse un colesterol total admisible desde el punto de vista clínico, por estar por debajo del límite de referencia.

- t-Student para proporciones. En este caso e=P y μp=μ=π luego con se puede obtener el valor del estadígrafo de comparación con la relación,

Ejemplo. Un analgésico de plaza, afirma en su propaganda que alivia el dolor en el 90% de los casos antes de la primera hora luego de su ingesta. Para validar esa información, se hace un experimento en 20 individuos con cefalea. Se observa que fue efectivo en 15 de ellos.

Ho: ≥0.9

H1: ≤0.9

El valor t-Student para una sola cola es, siendo P el porcentaje de éxitos P=15/20=0.75 y la media de =0.90 con desviación

Valor es significativo pues t0.999,19=-3.579 o t0.99,19=-2.539 o t0.95,19=-1.729, entonces  cae fuera del intervalo del 95%. De todas formas la evidencia no alcanza para rechazar la hipótesis a los niveles del 99% y 99,9%. Se la rechaza al nivel de 95% únicamente. Si bien no es tan terminante, se puede afirmar que la aseveración es falsa con un 95% de confianza.

- t-Student para dos muestras independientes. El modelo de t-Student también se puede usar cuando se desean comparar dos muestras entre sí, para detectar si hay diferencia significativa entre ellas, debido a algún factor analizado. En primer lugar se analizará el caso de dos muestras independientes como: aplicar dos tipos de remedios a dos grupos de pacientes escogidos al azar, o las mediciones repetidas de una misma magnitud, etc. El otro caso, cuando las muestras no son independientes sino apareadas, se verá en el próximo tema. Una vez más, los supuestos para poder aplicar este modelo se resumen en: para poder comparar con t-Student, las dos muestras deben ser normales, aleatorias e independientes.

Se sacan muestras aleatorias e independientes, de dos poblaciones normales. La idea es averiguar si ambas muestras provienen de la misma población o de poblaciones diferentes. Con eso se puede ver si el efecto de los “tratamientos” aplicados a las muestras es apreciable,en cuyo caso las muestras parecerán provenir de diferentes poblaciones. Se usa en los casos donde se compara el efecto de una droga aplicada a un grupo de pacientes, contra otro grupo al cual se le suministra un placebo. También para comparar dos técnicas clínicas y detectar si hay diferencias, por ejemplo: dos marcas comerciales de plaza, dos instrumentos de medición, dos individuos, dos técnicas diferentes (la nueva contra la vieja), dos protocolos, etc. Con estas comparaciones se pueden realizar muchos controles internos en el laboratorio para hacer calibraciones, medir eficacia, etc. Hay una limitación: solo se pueden comparar dos muestras entre sí a la vez y nada más. Para el caso de tener más de dos muestras, se recurre a los modelos de Anova.

- Comparación de medias. Para estos casos, el valor de t-Student para validaciones de medias

...

Descargar como (para miembros actualizados) txt (19 Kb)
Leer 12 páginas más »
Disponible sólo en Clubensayos.com