ESPACIOS VECTORIALES
Enviado por mariocerda • 27 de Septiembre de 2011 • 886 Palabras (4 Páginas) • 1.981 Visitas
Espacios Vectoriales
4.1 Definición de espacio vectorial.
4.2 Definición de subespacio vectorial y sus propiedades.
4.3 Combinación lineal. Independencia lineal.
4.4 Base y dimensión de un espacio vectorial, cambio de base.
4.5 Espacio vectorial con producto interno y sus propiedades.
4.6 Base ortonormal, proceso de ortonormalización de Gram-Schmidt.
4.1 Definición de Espacio Vectorial
Un espacio vectorial es una estructura matemática creada a partir de un conjunto no vacío con una operación suma interna al conjunto y una operación producto externa entre dicho conjunto y un cuerpo, cumpliendo una serie de propiedades o requisitos iniciales. A los elementos de un espacio vectorial se les llamará vectores y a los elementos del cuerpo se les llamará escalares.
Históricamente, las primeras ideas que condujeron a los espacios vectoriales modernos se remontan al siglo XVII: geometría analítica, matrices y sistemas de ecuaciones lineales. La primera formulación moderna y axiomática se debe a Giuseppe Peano, a finales del siglo XIX. Los siguientes avances en la teoría de espacios vectoriales provienen del análisis funcional, principalmente de los espacios de funciones. Los problemas de Análisis funcional requerían resolver problemas sobre la convergencia. Esto se hizo dotando a los espacios vectoriales de una adecuada topología, permitiendo tener en cuenta cuestiones de proximidad y continuidad. Estos espacios vectoriales topológicos, en particular los espacios de Banach y los espacios de Hilbert tienen una teoría más rica y elaborada.
Los espacios vectoriales tienen aplicaciones en otras ramas de la matemática, la ciencia y la ingeniería. Se utilizan en métodos como las series de Fourier, que se utiliza en las rutinas modernas de compresión de imágenes y sonido, o proporcionan el marco para resolver ecuaciones en derivadas parciales. Además, los espacios vectoriales proporcionan una forma abstracta libre de coordenadas de tratar con objetos geométricos y físicos, tales como tensores, que a su vez permiten estudiar las propiedades locales de variedades mediante técnicas de linealización.
Un espacio vectorial sobre un cuerpo (como el cuerpo de los números reales o los números complejos) es un conjunto no vacío, dotado de dos operaciones:
Los elementos: se llaman vectores.
Los elementos: se llaman escalares.
Con la operación interna tal que:
1) tenga la propiedad conmutativa, es decir
2) tenga la propiedad asociativa, es decir
3) tenga elemento neutro 0, es decir
4) tenga elemento opuesto, es decir
y la operación producto por un escalar:
operación externa tal que:
5) tenga la propiedad:
6) tenga elemento neutro 1:
Que tenga la propiedad distributiva:
7) distributiva por la izquierda:
8) distributiva por la derecha:
Observación
...