Guía de Matemática N° 4 Guía de Factorización
carlawgExamen6 de Mayo de 2017
4.659 Palabras (19 Páginas)327 Visitas
Guía de Matemática N° 4
Guía de Factorización :
Factorizar una expresión algebraica consiste en escribirla como un producto.Cuando realizamos las multiplicaciones:
1. 2x(x2 – 3x + 2) = 2x3 – 6x2 + 4x
2. (x + 7)(x + 5) = x2 + 12x + 35
entonces vemos que las expresiones de la izquierda son los factores y las de la derecha son las expresiones a factorizar, es decir , la factorización es el proceso inverso de la multiplicación.
La factorización es de extrema importancia en la Matemática, así es que debes tratar de entender lo más que puedas sobre lo que vamos a trabajar.
Existen varios casos de factorización :
1. FACTOR COMUN MONOMIO:
Factor común monomio: es el factor que está presente en cada término del polinomio :
Ejemplo N° 1: ¿ cuál es el factor común monomio en 12x + 18y - 24z ?
Entre los coeficientes es el 6, o sea, 6·2x + 6·3y - 6· 4z = 6(2x + 3y - 4z )
Ejemplo N° 2 : ¿ Cuál es el factor común monomio en : 5a2 - 15ab - 10 ac
El factor común entre los coeficientes es 5 y entre los factores literales es a, por lo tanto
5a2 - 15ab - 10 ac = 5a·a - 5a·3b - 5a · 2c = 5a(a - 3b - 2c )
Ejemplo N° 3 : ¿ Cuál es el factor común en 6x2y - 30xy2 + 12x2y2
El factor común es “ 6xy “ porque
6x2y - 30xy2 + 12x2y2 = 6xy(x - 5y + 2xy )
Realiza tú los siguientes ejercicios :
EJERCICIOS. Halla el factor común de los siguientes ejercicios :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
| |
| |
|
2. FACTOR COMUN POLINOMIO:
Es el polinomio que aparece en cada término de la expresión :
EJEMPLO N° 1.
Factoriza x(a + b ) + y( a + b ) =
Existe un factor común que es (a + b ) = x(a + b ) + y( a + b ) =
= ( a + b )( x + y )
EJEMPLO N° 2.
Factoriza 2a(m - 2n) - b (m - 2n ) =
= 2a(m - 2n) - b (m - 2n )
= (m - 2n )( 2a - b )
EJERCICIOS
|
|
|
|
|
|
|
|
|
|
4. FACTORIZACION DE UN TRINOMIO DE LA FORMA x2 + bx + c
El trinomio de la forma x2 + bx + c se puede descomponer en dos factores binomiales mediante el siguiente proceso : (a= 1)
EJEMPLO N° 1. Descomponer x2 + 6x + 5
1° Hallar dos factores que den el primer término x · x
2° Hallar los divisores del tercer término, seccionando aquellos cuya suma sea “6”
1 · 5 ó -1 ·-5
pero la suma debe ser +6 luego serán (x + 1 )( x + 5 )
EJEMPLO Nº 2:
Factorizar x2 + 4xy - 12y2
1º Hallar dos factores del primer término, o sea x2 : x · x
2º Hallar los divisores de 12y2 , éstos pueden ser : 6y · -2y ó -6y · 2y
ó 4y · -3y ó -4y · 3y
ó 12y · -y ó -12y · y
pero la suma debe ser +4 , luego servirán 6y y -2y, es decir
x2 + 4xy - 12y2 = ( x + 6y )( x - 2y )
EJERCICIOS:
Factoriza los siguientes trinomios en dos binomios :
|
|
|
|
|
|
|
|
|
|
|
|
5. FACTORIZACION DE UN TRINOMIO DE LA FORMA ax2+ bx + c
EJEMPLO
Factoriza 2x2 - 11x + 5
1º Se multiplica axc -> 2x · 5 = 10x
2º Se buscan coeficiente de b 11
...