ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Método Científico


Enviado por   •  15 de Marzo de 2013  •  6.810 Palabras (28 Páginas)  •  403 Visitas

Página 1 de 28

Método científico

El método científico (del griego: -meta = hacia, a lo largo- -odos = camino-; y del latín scientia = conocimiento; camino hacia el conocimiento) presenta diversas definiciones debido a la complejidad de una exactitud en su conceptualización: "Conjunto de pasos fijados de antemano por una disciplina con el fin de alcanzar conocimientos válidos mediante instrumentos confiables", "secuencia estándar para formular y responder a una pregunta", "pauta que permite a los investigadores ir desde el punto A hasta el punto Z con la confianza de obtener un conocimiento válido". Así el método es un conjunto de pasos que trata de protegernos de la subjetividad en el conocimiento.

El método científico está sustentado por dos pilares fundamentales. El primero de ellos es la reproducibilidad, es decir, la capacidad de repetir un determinado experimento en cualquier lugar y por cualquier persona. Este pilar se basa, esencialmente, en la comunicación y publicidad de los resultados obtenidos. El segundo pilar es la falsabilidad. Es decir, que toda proposición científica tiene que ser susceptible de ser falsada (falsacionismo). Esto implica que se pueden diseñar experimentos que en el caso de dar resultados distintos a los predichos negarían la hipótesis puesta a prueba. La falsabilidad no es otra cosa que el modus tollendo tollens del método hipotético deductivo experimental. Según James B. Conant no existe un método científico. El científico usa métodos definitorios, métodos clasificatorios, métodos estadísticos, métodos hipotético-deductivos, procedimientos de medición, etcétera. Según esto, referirse a el método científico es referirse a este conjunto de tácticas empleadas para constituir el conocimiento, sujetas al devenir histórico, y que pueden ser otras en el futuro.1 Ello nos conduce tratar de sistematizar las distintas ramas dentro del campo del método científico.

Tabla de contenidos

[ocultar]

• 1 Tipologías

• 2 Descripciones del método científico

o 2.1 El método científico como método para la eliminación de falacias y prejuicios

• 3 Véase también

• 4 Notas

• 5 Enlaces externos

Tipologías

La sistematización de los métodos científicos es una materia compleja y difícil. No existe una única clasificación, ni siquiera a la hora de considerar cuántos métodos distintos existen. A pesar de ello aquí se presenta una clasificación que cuenta con cierto consenso dentro de la comunidad científica. Además es importante saber que ningún método es un camino infalible para el conocimiento, todos constituyen una propuesta racional para llegar a su obtención.

• Método empírico-analítico. Conocimiento autocorrectivo y progresivo. Características de las ciencias naturales y sociales o humanas. Caracteriza a las ciencias descriptivas . Es el método general más utilizado. Se basa en la lógica empírica. Dentro de éste podemos observar varios métodos específicos con técnicas particulares. Se distinguen los elementos de un fenómeno y se procede a revisar ordenadamente cada uno de ellos por separado.

o Método experimental: Algunos lo consideran por su gran desarrollo y relevancia un método independiente del método empírico, considerándose a su vez independiente de la lógica empírica su base, la lógica experimental. Comprende a su vez:

 Método hipotético deductivo. En el caso de que se considere al método experimental como un método independiente, el método hipotético deductivo pasaría a ser un método específico dentro del método empírico analítico, e incluso fuera de éste.

o Método de la observación científica: Es el propio de las ciencias descriptivas.

o Método de la medición: A partir del cual surge todo el complejo empírico-estadístico.

• Método hermenéutico: Es el estudio de la coherencia interna de los textos, la Filología, la exégesis de libros sagrados y el estudio de la coherencia de las normas y principios.

• Método dialéctico: La característica esencial del método dialéctico es que considera los fenómenos históricos y sociales en continuo movimiento. Dio origen al materialismo histórico.

• Método fenomenológico. Conocimiento acumulativo y menos autocorrectivo.

• Método histórico. Está vinculado al conocimiento de las distintas etapas de los objetos en su sucesión cronológica. Para conocer la evolución y desarrollo del objeto o fenómeno de investigación se hace necesario revelar su historia, las etapas principales de su desenvolvimiento y las conexiones históricas fundamentales. Mediante el método histórico se analiza la trayectoria concreta de la teoría, su condicionamiento a los diferentes períodos de la historia.

• Método sistémico. Está dirigido a modelar el objeto mediante la determinación de sus componentes, así como las relaciones entre ellos. Esas relaciones determinan por un lado la estructura del objeto y por otro su dinámica.

• Método sintético. Es un proceso mediante el cual se relacionan hechos aparentemente aislados y se formula una teoría que unifica los diversos elementos. Consiste en la reunión racional de varios elementos dispersos en una nueva totalidad, este se presenta más en el planteamiento de la hipótesis. El investigador sintetiza las superaciones en la imaginación para establecer una explicación tentativa que someterá a prueba.

• Método lógico. Es otra gran rama del método científico, aunque es más clásica y de menor fiabilidad. Su unión con el método empírico dio lugar al método hipotético deductivo, uno de los más fiables hoy en día.

o Método lógico deductivo: Mediante él se aplican los principios descubiertos a casos particulares, a partir de un enlace de juicios. Destaca en su aplicación el método de extrapolación. Se divide en:

 Método deductivo directo de conclusión inmediata: Se obtiene el juicio de una sola premisa, es decir que se llega a una conclusión directa sin intermediarios.

 Método deductivo indirecto o de conclusión mediata: La premisa mayor contiene la proposición universal, la premisa menor contiene la proposición particular, de su comparación resulta la conclusión. Utiliza silogismos.

o Método lógico inductivo: Es el razonamiento que, partiendo de casos particulares, se eleva a conocimientos generales. Destaca en su aplicación el método de interpolación. Se divide en:

 Método inductivo de inducción completa: La conclusión es sacada del estudio de todos los elementos que forman el objeto de investigación, es decir que solo es posible si conocemos con exactitud el numero de elementos que forman el objeto de estudio y además, cuando sabemos que el conocimiento generalizado pertenece a cada uno de los elementos del objeto de investigación.

 Método inductivo de inducción incompleta: Los elementos del objeto de investigación no pueden ser numerados y estudiados en su totalidad, obligando al sujeto de investigación a recurrir a tomar una muestra representativa, que permita hacer generalizaciones. Éste a su vez comprende:

 Método de inducción por simple enumeración o conclusión probable. Es un método utilizado en objetos de investigación cuyos elementos son muy grandes o infinitos. Se infiere una conclusión universal observando que un mismo carácter se repite en una serie de elementos homogéneos, pertenecientes al objeto de investigación, sin que se presente ningún caso que entre en contradicción o niegue el carácter común observado. La mayor o menor probabilidad en la aplicación del método, radica en el numero de casos que se analicen, por tanto sus conclusiones no pueden ser tomadas como demostraciones de algo, sino como posibilidades de veracidad. Basta con que aparezca un solo caso que niegue la conclusión para que esta sea refutada como falsa.

 Método de inducción científica. Se estudian los caracteres y/o conexiones necesarios del objeto de investigación, relaciones de causalidad, entre otros. Guarda enorme relación con el método empírico.

o Analogía: Consiste en inferir de la semejanza de algunas características entre dos objetos, la probabilidad de que las características restantes sean también semejantes. Los razonamientos analógicos no son siempre validos.

Descripciones del método científico

Modelo simplificado para el método científico que se sigue en el MC-14 o método científico en 14 etapas."

Por proceso o "método científico" se entiende aquellas prácticas utilizadas y ratificadas por la comunidad científica como válidas a la hora de proceder con el fin de exponer y confirmar sus teorías. Las teorías científicas, destinadas a explicar de alguna manera los fenómenos que observamos, pueden apoyarse o no en experimentos que certifiquen su validez. Sin embargo, hay que dejar claro que el mero uso de metodologías experimentales, no es necesariamente sinónimo del uso del método científico, o su realización al 100%. Por ello, Francis Bacon definió el método científico de la siguiente manera:

1. Observación: Observar es aplicar atentamente los sentidos a un objeto o a un fenómeno, para estudiarlos tal como se presentan en realidad.

2. Inducción: La acción y efecto de extraer, a partir de determinadas observaciones o experiencias particulares, el principio particular de cada una de ellas.

3. Hipótesis: Planteamiento mediante la observación siguiendo las normas establecidas por el método científico.

4. Probar la hipótesis por experimentación.

5. Demostración o refutación (antítesis) de la hipótesis.

6. Tesis o teoría científica (conclusiones).

Así queda definido el método científico tal y como es normalmente entendido, es decir, la representación social dominante del mismo. Esta definición se corresponde sin embargo únicamente a la visión de la ciencia denominada positivismo en su versión más primitiva. Empero, es evidente que la exigencia de la experimentación es imposible de aplicar a áreas de conocimiento como la vulcanología, la astronomía, la física teórica, etcétera. En tales casos, es suficiente la observación de los fenómenos producidos naturalmente, en los que el método científico se utiliza en el estudio (directos o indirectos) a partir de modelos más pequeños, o a partes de este.

Por otra parte, existen ciencias no incluídas en las ciencias naturales, especialmente en el caso de las ciencias humanas y sociales, donde los fenómenos no sólo no se pueden repetir controlada y artificialmente (que es en lo que consiste un experimento), sino que son, por su esencia, irrepetibles, v.g. la historia. De forma que el concepto de método científico ha de ser repensado, acercándose más a una definición como la siguiente: "proceso de conocimiento caracterizado por el uso constante e irrestricto de la capacidad crítica de la razón, que busca establecer la explicación de un fenómeno ateniéndose a lo previamente conocido, resultando una explicación plenamente congruente con los datos de la observación".

Así, por método o proceso científico se entiende aquellas prácticas utilizadas y ratificadas por la comunidad científica como válidas a la hora de proceder con el fin de exponer y confirmar sus teorías. Las teorías científicas, destinadas a explicar de alguna manera los fenómenos que observamos, pueden apoyarse o no en experimentos que certifiquen su validez.

El método científico como método para la eliminación de falacias y prejuicios

Artículo principal: Lista de prejuicios cognitivos

El método científico envuelve la observación de fenómenos naturales, luego, la postulación de hipótesis y su comprobación mediante la experimentación. Pues bien, los prejuicios cognitivos no son más que hipótesis, inducciones o construcciones mentales que han sido sesgadas positiva o negativamente por el cerebro. Asimismo cuando se realizan afirmaciones o se argumenta y estos prejuicios cognitivos salen a la luz se convierten en falacias. El prejuicio cognitivo o proceso mental con el que se sesgan las creencias no se puede eliminar pues es un aspecto fisiológico intrínseco a la psique del ser humano y que además parece estar extendido evolutivamente ya que cumple su función en la asociación y reconocimiento de objetos cotidianos, véase por ejemplo pareidolia. Lo que es posible es compensar el sesgo o modificar las propias creencias mediante el método científico como mecanismo para descartar hipótesis que son falsas. De esta forma, el sesgo se situaría en dirección a hipótesis que son menos falsas hasta nuevas revisiones en busca de factores desconocidos o nueva información.

La ciencia no pretende ser ni absoluta, ni autoritaria, ni dogmática. Todas las ideas, hipótesis, teorías; todo el conocimiento científico está sujeto a revisión, a estudio y a modificación. El conocimiento que tenemos representa las hipótesis científicas y teorías respaldadas por observaciones y experimentos (método empírico).

Para no caer en el prejuicio cognitivo es necesario, por tanto, la experimentación, el no hacerlo llevaría a la misma negligencia puesto que la verdad de una aseveración según el método científico recae en la fuerza de sus evidencias comprobadas por experimentación. Después de llevar a cabo la experimentación se analizan los resultados y se llega a una conclusión. Si los resultados respaldan la hipótesis, ésta adquiere validez; si los resultados la refutan, ésta se descarta o se modifica presentando nuevas formas para refutarla.

El método científico es también afectado naturalmente por los prejuicios cognitivos ya que los efectos asociativos de nuestra mente son los que permiten, al mismo tiempo, lanzar el mayor número de hipótesis. Sin embargo, el método, si es bien ejecutado en sus últimos y más importantes pasos, permite desecharlas.

El primer paso en el método científico de tipo empírico es la observación cuidadosa de un fenómeno y la descripción de los hechos, es aquí donde entran en juego los prejuicios. Después, el científico trata de explicarlo mediante hipótesis las cuales, ya están sesgadas por los prejuicios en la percepción de los acontecimientos o en las propias creencias. Sin embargo, solamente las ideas que puedan comprobarse experimentalmente están dentro del ámbito de la ciencia lo que permite desechar muchas teorías. Si las hipótesis enunciadas fueran válidas deberían predecir las consecuencias en el experimento y además debería ser posible repetirlas. De esta forma, mediante la experimentación, la repetición y supervisión del experimento por parte de personas que pudieran tener otros sesgos cognitivos se minimizan los errores del experimento, los errores en la interpretación de los resultados o errores en estadísticas que harían a la teoría una falsa o imprecisa creencia. Por eso, en ciencia se usa la revisión por pares, a mayor número de revisiones menor probabilidad de sesgo o de falsa interpretación de los datos experimentales, con lo que el trabajo es considerado más riguroso o estable. Un proceso así aunque mucho menos riguroso se puede observar en el pensamiento crítico cuando éste requiere de investigación activa propia para el esclarecimiento de argumentos y comprobación de las fuentes de información. En el pensamiento crítico se toman decisiones en función de la carga de la prueba que se hayan realizado sobre las fuentes y los argumentos y la información que se obtiene puede llegar a ser indirecta (de ahí la falta de rigurosidad). En el método científico no solo debe ser el hecho probado por la experimentación directa sino que debe ser posible repetirlo.

El problema con los prejuicios cognitivos es que normalmente se aplican a conceptos que cambian con regularidad quizás a una velocidad mayor de lo que es posible medirlo mediante pruebas o experimentación, además no son uniformes y poseen excepciones, estos prejuicios se basan por tanto en probabilidades y no en afirmaciones certeras. El método científico por lo menos permite ponderar estas probabilidades, realizar estadísticas y revisar la propia seguridad en las afirmaciones. De esta forma debería eliminar la posición de certeza o del perfecto conocimiento del funcionamiento del mundo (otro sesgo extendido). El método científico, por tanto, se convierte en el método maestro para probar hipótesis y desechar las falsas. De otra forma, sin el método científico, las presunciones o prejuicios quedarían fijas cuando las circunstancias cambian, sujetas a nuestras propias interpretaciones de la realidad.

Metodología de diseño conceptual

El primer paso en el diseño de una base de datos es la producción del esquema conceptual. Normalmente, se construyen varios esquemas conceptuales, cada uno para representar las distintas visiones que los usuarios tienen de la información. Cada una de estas visiones suelen corresponder a las diferentes áreas funcionales de la empresa como, por ejemplo, producción, ventas, recursos humanos, etc.

Estas visiones de la información, denominadas vistas, se pueden identificar de varias formas. Una opción consiste en examinar los diagramas de flujo de datos, que se pueden haber producido previamente, para identificar cada una de las áreas funcionales. La otra opción consiste en entrevistar a los usuarios, examinar los procedimientos, los informes y los formularios, y también observar el funcionamiento de la empresa.

A los esquemas conceptuales correspondientes a cada vista de usuario se les denomina esquemas conceptuales locales. Cada uno de estos esquemas se compone de entidades, relaciones, atributos, dominios de atributos e identificadores. El esquema conceptual también tendrá una documentación, que se irá produciendo durante su desarrollo. Las tareas a realizar en el diseño conceptual son las siguientes:

1. Identificar las entidades.

2. Identificar las relaciones.

3. Identificar los atributos y asociarlos a entidades y relaciones.

4. Determinar los dominios de los atributos.

5. Determinar los identificadores.

6. Determinar las jerarquías de generalización (si las hay).

7. Dibujar el diagrama entidad-relación.

8. Revisar el esquema conceptual local con el usuario.

1. Identificar las entidades

En primer lugar hay que definir los principales objetos que interesan al usuario. Estos objetos serán las entidades. Una forma de identificar las entidades es examinar las especificaciones de requisitos de usuario. En estas especificaciones se buscan los nombres o los sintagmas nominales que se mencionan (por ejemplo: número de empleado, nombre de empleado, número de inmueble, dirección del inmueble, alquiler, número de habitaciones). También se buscan objetos importantes como personas, lugares o conceptos de interés, excluyendo aquellos nombres que sólo son propiedades de otros objetos. Por ejemplo, se pueden agrupar el número de empleado y el nombre de empleado en una entidad denominada empleado, y agrupar número de inmueble, dirección del inmueble, alquiler y número de habitaciones en otra entidad denominada inmueble.

Otra forma de identificar las entidades es buscar aquellos objetos que existen por sí mismos. Por ejemplo, empleado es una entidad porque los empleados existen, sepamos o no sus nombres, direcciones y teléfonos. Siempre que sea posible, el usuario debe colaborar en la identificación de las entidades.

A veces, es difícil identificar las entidades por la forma en que aparecen en las especificaciones de requisitos. Los usuarios, a veces, hablan utilizando ejemplos o analogías. En lugar de hablar de empleados en general, hablan de personas concretas, o bien, hablan de los puestos que ocupan esas personas.

Para liarlo aún más, los usuarios usan, muchas veces, sinónimos y homónimos. Dos palabras son sinónimos cuando tienen el mismo significado. Los homónimos ocurren cuando la misma palabra puede tener distintos significados dependiendo del contexto.

No siempre es obvio saber si un objeto es una entidad, una relación o un atributo. Por ejemplo ¿cómo se podría clasificar matrimonio? Pues de cualquiera de las tres formas. El análisis es subjetivo, por lo que distintos diseñadores pueden hacer distintas interpretaciones, aunque todas igualmente válidas. Todo depende de la opinión y la experiencia de cada uno. Los diseñadores de bases de datos deben tener una visión selectiva y clasificar las cosas que observan dentro del contexto de la empresa u organización. A partir de unas especificaciones de usuario es posible que no se pueda deducir un conjunto único de entidades, pero después de varias iteraciones del proceso de análisis, se llegará a obtener un conjunto de entidades que sean adecuadas para el sistema que se ha de construir.

Conforme se van identificando las entidades, se les dan nombres que tengan un significado y que sean obvias para el usuario. Los nombres de las entidades y sus descripciones se anotan en el diccionario de datos. Cuando sea posible, se debe anotar también el número aproximado de ocurrencias de cada entidad. Si una entidad se conoce por varios nombres, éstos se deben anotar en el diccionario de datos como alias o sinónimos.

2. Identificar las relaciones

Una vez definidas las entidades, se deben definir las relaciones existentes entre ellas. Del mismo modo que para identificar las entidades se buscaban nombres en las especificaciones de requisitos, para identificar las relaciones se suelen buscar las expresiones verbales (por ejemplo: oficina tiene empleados, empleado gestiona inmueble, cliente visita inmueble). Si las especificaciones de requisitos reflejan estas relaciones es porque son importantes para la empresa y, por lo tanto, se deben reflejar en el esquema conceptual.

Pero sólo interesan las relaciones que son necesarias. En el ejemplo anterior, se han identificado las relaciones empleado gestiona inmueble y cliente visita inmueble. Se podría pensar en incluir una relación entre empleado y cliente: empleado atiende a cliente, pero observando las especificaciones de requisitos no parece que haya interés en modelar tal relación.

La mayoría de las relaciones son binarias (entre dos entidades), pero no hay que olvidar que también puede haber relaciones en las que participen más de dos entidades, así como relaciones recursivas.

Es muy importante repasar las especificaciones para comprobar que todas las relaciones, explícitas o implícitas, se han encontrado. Si se tienen pocas entidades, se puede comprobar por parejas si hay alguna relación entre ellas. De todos modos, las relaciones que no se identifican ahora se suelen encontrar cuando se valida el esquema con las transacciones que debe soportar.

Una vez identificadas todas las relaciones, hay que determinar la cardinalidad mínima y máxima con la que participa cada entidad en cada una de ellas. De este modo, el esquema representa de un modo más explícito la semántica de las relaciones. La cardinalidad es un tipo de restricción que se utiliza para comprobar y mantener la calidad de los datos. Estas restricciones son aserciones sobre las entidades que se pueden aplicar cuando se actualiza la base de datos para determinar si las actualizaciones violan o no las reglas establecidas sobre la semántica de los datos.

Conforme se van identificando las relaciones, se les van asignando nombres que tengan significado para el usuario. En el diccionario de datos se anotan los nombres de las relaciones, su descripción y las cardinalidades con las que participan las entidades en ellas.

3. Identificar los atributos y asociarlos a entidades y relaciones

Al igual que con las entidades, se buscan nombres en las especificaciones de requisitos. Son atributos los nombres que identifican propiedades, cualidades, identificadores o características de entidades o relaciones.

Lo más sencillo es preguntarse, para cada entidad y cada relación, ¿qué información se quiere saber de ...? La respuesta a esta pregunta se debe encontrar en las especificaciones de requisitos. Pero, en ocasiones, será necesario preguntar a los usuarios para que aclaren los requisitos. Desgraciadamente, los usuarios pueden dar respuestas a esta pregunta que también contengan otros conceptos, por lo que hay que considerar sus respuestas con mucho cuidado.

Al identificar los atributos, hay que tener en cuenta si son simples o compuestos. Por ejemplo, el atributo dirección puede ser simple, teniendo la dirección completa como un solo valor: `San Rafael 45, Almazora'; o puede ser un atributo compuesto, formado por la calle (`San Rafael'), el número (`45') y la población (`Almazora'). El escoger entre atributo simple o compuesto depende de los requisitos del usuario. Si el usuario no necesita acceder a cada uno de los componentes de la dirección por separado, se puede representar como un atributo simple. Pero si el usuario quiere acceder a los componentes de forma individual, entonces se debe representar como un atributo compuesto.

También se deben identificar los atributos derivados o calculados, que son aquellos cuyo valor se puede calcular a partir de los valores de otros atributos. Por ejemplo, el número de empleados de cada oficina, la edad de los empleados o el número de inmuebles que gestiona cada empleado. Algunos diseñadores no representan los atributos derivados en los esquemas conceptuales. Si se hace, se debe indicar claramente que el atributo es derivado y a partir de qué atributos se obtiene su valor. Donde hay que considerar los atributos derivados es en el diseño físico.

Cuando se están identificando los atributos, se puede descubrir alguna entidad que no se ha identificado previamente, por lo que hay que volver al principio introduciendo esta entidad y viendo si se relaciona con otras entidades.

Es muy útil elaborar una lista de atributos e ir eliminándolos de la lista conforme se vayan asociando a una entidad o relación. De este modo, uno se puede asegurar de que cada atributo se asocia a una sola entidad o relación, y que cuando la lista se ha acabado, se han asociado todos los atributos.

Hay que tener mucho cuidado cuando parece que un mismo atributo se debe asociar a varias entidades. Esto puede ser por una de las siguientes causas:

• Se han identificado varias entidades, como director, supervisor y administrativo, cuando, de hecho, pueden representarse como una sola entidad denominada empleado. En este caso, se puede escoger entre introducir una jerarquía de generalización, o dejar las entidades que representan cada uno de los puestos de empleado.

• Se ha identificado una relación entre entidades. En este caso, se debe asociar el atributo a una sola de las entidades y hay que asegurarse de que la relación ya se había identificado previamente. Si no es así, se debe actualizar la documentación para recoger la nueva relación.

Conforme se van identificando los atributos, se les asignan nombres que tengan significado para el usuario. De cada atributo se debe anotar la siguiente información:

• Nombre y descripción del atributo.

• Alias o sinónimos por los que se conoce al atributo.

• Tipo de dato y longitud.

• Valores por defecto del atributo (si se especifican).

• Si el atributo siempre va a tener un valor (si admite o no nulos).

• Si el atributo es compuesto y, en su caso, qué atributos simples lo forman.

• Si el atributo es derivado y, en su caso, cómo se calcula su valor.

• Si el atributo es multievaluado.

4. Determinar los dominios de los atributos

El dominio de un atributo es el conjunto de valores que puede tomar el atributo. Por ejemplo el dominio de los números de oficina son las tiras de hasta tres caracteres en donde el primero es una letra y el siguiente o los dos siguientes son dígitos en el rango de 1 a 99; el dominio de los números de teléfono y los números de fax son las tiras de 9 dígitos.

Un esquema conceptual está completo si incluye los dominios de cada atributo: los valores permitidos para cada atributo, su tamaño y su formato. También se puede incluir información adicional sobre los dominios como, por ejemplo, las operaciones que se pueden realizar sobre cada atributo, qué atributos pueden compararse entre sí o qué atributos pueden combinarse con otros. Aunque sería muy interesante que el sistema final respetara todas estas indicaciones sobre los dominios, esto es todavía una línea abierta de investigación.

Toda la información sobre los dominios se debe anotar también en el diccionario de datos.

5. Determinar los identificadores

Cada entidad tiene al menos un identificador. En este paso, se trata de encontrar todos los identificadores de cada una de las entidades. Los identificadores pueden ser simples o compuestos. De cada entidad se escogerá uno de los identificadores como clave primaria en la fase del diseño lógico.

Cuando se determinan los identificadores es fácil darse cuenta de si una entidad es fuerte o débil. Si una entidad tiene al menos un identificador, es fuerte (otras denominaciones son padre, propietaria o dominante). Si una entidad no tiene atributos que le sirvan de identificador, es débil (otras denominaciones son hijo, dependiente o subordinada).

Todos los identificadores de las entidades se deben anotar en el diccionario de datos.

6. Determinar las jerarquías de generalización

En este paso hay que observar las entidades que se han identificado hasta el momento. Hay que ver si es necesario reflejar las diferencias entre distintas ocurrencias de una entidad, con lo que surgirán nuevas subentidades de esta entidad genérica; o bien, si hay entidades que tienen características en común y que realmente son subentidades de una nueva entidad genérica.

En cada jerarquía hay que determinar si es total o parcial y exclusiva o superpuesta.

7. Dibujar el diagrama entidad-relación

Una vez identificados todos los conceptos, se puede dibujar el diagrama entidad-relación correspondiente a una de las vistas de los usuarios. Se obtiene así un esquema conceptual local.

8. Revisar el esquema conceptual local con el usuario

Antes de dar por finalizada la fase del diseño conceptual, se debe revisar el esquema conceptual local con el usuario. Este esquema está formado por el diagrama entidad-relación y toda la documentación que describe el esquema. Si se encuentra alguna anomalía, hay que corregirla haciendo los cambios oportunos, por lo que posiblemente haya que repetir alguno de los pasos anteriores. Este proceso debe repetirse hasta que se esté seguro de que el esquema conceptual es una fiel representación de la parte de la empresa que se está tratando de modelar.

DISEÑO

Utilizado habitualmente en el contexto de las artes aplicadas, ingeniería, arquitectura y otras disciplinas creativas, diseño se define como el proceso previo de configuración mental "pre-figuración" en la búsqueda de una solución en cualquier campo. Etimológicamente derivado del término italiano disegno dibujo, designio, signare, signado "lo por venir", el porvenir visión representada gráficamente del futuro, lo hecho es la obra, lo por hacer es el proyecto, el acto de diseñar como prefiguración es el proceso previo en la búsqueda de una solución o conjunto de las mismas. Plasmar el pensamiento de la solución mediante esbozos, dibujos, bocetos o esquemas trazados en cualquiera de los soportes, durante o posteriores a un proceso de observación de alternativas o investigación.

El acto intuitivo de diseñar podría llamarse creatividad como acto de creación o innovación si el objeto no existe, o es una modificación de lo existente inspiración abstracción, síntesis, ordenación y transformación.

Referente al signo, significación, designar es diseñar el hecho estético de la solución encontrada. Es el resultado de la economía de recursos materiales, la forma y el significado implícito en la obra dada su ambigua apreciación no puede determinarse si un diseño es un proceso estético cuando lo accesorio o superfluo se antepone a la función o solución. El acto humano de diseñar no es un hecho artístico en sí mismo aunque puede valerse de los mismos procesos y los mismos medios de expresión, al diseñar un objeto, o signo de comunicación visual en función de la búsqueda de una aplicación práctica.

El verbo "diseñar" se refiere al proceso de creación y desarrollo para producir un nuevo objeto o medio de comunicación (objeto, proceso, servicio, conocimiento o entorno) para uso humano. El sustantivo "diseño" se refiere al plan final o proposición determinada fruto del proceso de diseñar (dibujo, proyecto, maqueta, plano o descripción técnica) o, más popularmente), al resultado de poner ese plan final en práctica (la imagen o el objeto producido).

Diseñar requiere principalmente consideraciones funcionales y estéticas. Esto necesita de numerosas fases de investigación, análisis, modelado, ajustes y adaptaciones previas a la producción definitiva del objeto. Además comprende multitud de disciplinas y oficios dependiendo del objeto a diseñar y de la participación en el proceso de una o varias personas.

Diseñar es una tarea compleja, dinámica e intrincada. Es la integración de requisitos técnicos, sociales y económicos, necesidades biológicas, con efectos psicológicos y materiales, forma, color, volumen y espacio, todo ello pensado e interrelacionado con el medio ambiente que rodea a la humanidad. De esto último se puede desprender la alta responsabilidad ética del diseño y los diseñadores a nivel mundial. Un buen punto de partida para entender éste fenómeno es revisar la Gestalt y como la teoría de sistemas aporta una visión amplia del tema.

Un filósofo contemporáneos, Vilém Flusser, propone, en su libro Filosofía del diseño, que el futuro (el destino de la humanidad) depende del diseño.

Este diseñador industrial / gráfico plantea un método proyectual basado en la resolución de problemas. Esta metodología evita el inventar la rueda con cada proyecto y plantea sistematizar la resolución de problemas.

10/8/04 - 1. definición del problema

Lo primero que hay que hacer es definir el problema en su conjunto. “Muchos diseñadores creen que los problemas ya han sido suficientemente definidos por sus clientes. Pero esto no es en absoluto suficiente”, dice Archer.

Por tanto es necesario empezar por la definición del problema, que servirá también para definir los límites en los que deberá moverse el proyectista.

Supongamos que el problema consiste en proyectar una lámpara, habrá que definir si se trata de una lámpara de sobremesa o de aplique, de estudio o de trabajo, para una sala o un dormitorio. Si esta lámpara tendrá que ser de incandescencia o fluorescente o de luz diurna o de otra cosa. Si tiene que tener un precio límite, si va a ser distribuida en los grandes almacenes, si deberá ser desmontable o plegable, si deberá llevar un reóstato para regular la intensidad luminosa, y cosas por el estilo.

2. elementos del problema

Cualquier problema puede ser descompuesto en sus elementos. Esta operación facilita la proyectación porque tiende a descubrir los pequeños problemas particulares que se ocultan tras los subproblemas. Una vez resueltos los pequeños problemas de uno en uno (y aquí empieza a intervenir la creatividad abandonando la idea de buscar una idea), se recomponen de forma coherente a partir de todas las características funcionales de cada una de las partes y funcionales entre sí, a partir de las características materiales, psicológicas, ergonómicas, estructurales, económicas y, por último, formales.

"Lo bello es la consecuencia de lo correcto", reza una regla japonesa.

El principio de descomponer un problema en sus elementos para poder analizarlo procede del método cartesiano.

Como los problemas, sobre todo hoy en día, se han convertido en muy complejos y a veces en complicados, es necesario que el proyectista tenga toda una serie de informaciones sobre cada problema particular para poder proyectar con mayor seguridad.

Tal vez sea oportuna una definición de "complejidad" para poder distinguir lo complejo de lo complicado. Para Abraham A. Moles "un producto es complicado cuando los elementos que lo componen pertenecen a numerosas clases diferentes; mientras que es complejo si contiene un gran número de elementos reagrupables no obstante en pocas clases".

Podría decirse que un automóvil es complicado mientras que un ordenador electrónico es complejo. Actualmente se tiende a la producción de objetos poco complicados, a reducir el número de las clases de los elementos que forman un producto. Así pues, en un futuro habrá cada vez menos productos complicados.

Descomponer el problema en sus elementos quiere decir descubrir numerosos subproblemas. "Un problema particular de diseño es un conjunto de muchos subproblemas. Cada uno de ellos puede resolverse obteniendo un campo de soluciones aceptables", asevera Archer.

Cada subproblema tiene una solución óptima que no obstante puede estar en contradicción con las demás. La parte más ardua del trabajo del diseñador será la de conciliar las diferentes soluciones con el proyecto global.

La solución del problema general consiste en la coordinación creativa de las soluciones de los subproblemas.

Supongamos que el problema presentado sea el de proyectar una lámpara y supongamos también haber definido que se trata de una lámpara de luz diurna para una habitación normal.

Los subproblemas son:

• Qué tipo de luz deberá tener esta lámpara.

• Si esta luz deberá estar graduada por un reóstato.

• Con qué material habrá que construirla.

• Con qué tecnología habrá que trabajar este material para hacer la lámpara.

• Dónde tendrá el interruptor.

• Cómo será transportada, con qué embalaje.

• Cómo se dispondrá en el almacén.

• Si hay partes ya prefabricadas (portalámparas, reóstato, interruptor, etc.).

• Qué forma tendrá.

• Cuánto deberá costar.

Estos son los subproblemas que hay que resolver en forma creativa.

3. recopilación de datos

Sigamos todavía con el ejemplo del proyecto de la lámpara y veamos qué datos convendrá recoger para decidir luego los elementos constitutivos del proyecto. En primer lugar el diseñador tendrá que recoger todos los catálogos de las fábricas que producen lámparas parecidas a la que hay que proyectar. Es evidente que, antes de pensar en cualquier posible solución, es mejor documentarse. No vaya a ser que alguien se nos haya adelantado. Carece completamente de sentido ponerse a pensar en un tipo de solución sin saber si la lámpara en la que estamos trabajando ya existe en el mercado. Por supuesto se encontrarán muchos ejemplos que habrá que descartar pero al final, eliminando los duplicados y los tipos que nunca podrán ser competitivos, tendremos una buena recopilación de datos.

Luego para cada elemento del problema, tendremos que buscar nuevamente más datos:

• Cuántos tipos de bombillas existen actualmente en el mercado.

• Cuántos tipos de reóstatos.

• Cuántos tipos de interruptores.

• Etcétera.

4. análisis de datos

El análisis de todos los datos recogidos puede proporcionar sugerencias sobre qué es lo que no hay que hacer para proyectar bien una lámpara, y puede orientar la proyectación hacia otros materiales, otras tecnologías, otros costes.

5. creatividad

La creatividad reemplazará a la idea intuitiva, vinculada todavía a la forma artístico-romántica de resolver un problema. Así pues, la creatividad ocupa el lugar de la idea y procede según su método. Mientras la idea, vinculada a la fantasía, puede proponer soluciones irrealizables por razones técnicas, materiales o económicas, la creatividad se mantiene en los límites del problema, límites derivados del análisis de los datos y de los subproblemas.

6. materiales - tecnologías

La sucesiva operación consiste en otra pequeña recogida de datos relativos a los materiales y a las tecnologías que el diseñador tiene a su disposición en aquel momento para realizar su proyecto. La industria que ha planteado el problema al diseñador dispondrá ciertamente de una tecnología propia para fabricar determinados materiales y no otros. Por tanto es inútil pensar en soluciones al margen de estos dos datos relativos a los materiales y a las tecnologías.

7. experimentación

Es ahora cuando el proyectista realizará una experimentación de los materiales y las técnicas disponibles para realizar su proyecto. Muy a menudo materiales y técnicas son utilizados de una única forma o de muy pocas formas según la tradición. Muchos industriales dicen: “Siempre lo hemos hecho así, ¿por qué habría que cambiar?”. En cambio la experimentación permite descubrir nuevos usos de un material o de un instrumento.

Hace algunos años fue lanzado al mercado un producto industrial llamado Fibralín, compuesto de fibras de rayón entretejidas como un fieltro, de goma sintética. Este material había sido producido para sustituir a determinados tejidos utilizados en la confección en el interior de las prendas y se fabrica en diferentes grosores, desde el del papel de fumar al del cartón. Tenía un precio muy asequible y un aspecto agradable parecido al papel de seda japonés.

Este material, que todavía se produce, resiste bien la impresión serigráfica, y yo mismo hice varias pruebas con él. Con este material proyecté instalaciones efímeras para exposiciones de productos industriales. Desde entonces ese material, inventado para la confección, es utilizado por sus cualidades y posibilidades específicas, incluso en instalaciones y en impresiones artísticas en serigrafía.

8. modelos

Estas experimentaciones permiten extraer muestras, pruebas, informaciones, que pueden llevar a la construcción de modelos demostrativos de nuevos usos para determinados objetivos. Estos nuevos usos pueden ayudar a resolver subproblemas parciales que a su vez, junto con los demás, contribuirán a la solución global.

Como se desprende de este esquema de método, todavía no hemos hecho ningún dibujo, ningún boceto, nada que pueda definir la solución. Todavía no sabemos qué forma tendrá lo que hay que proyectar. Pero en cambio tenemos la seguridad de que el margen de posibles errores será muy reducido. Ahora podemos empezar a establecer relaciones entre los datos recogidos e intentar aglutinar los subproblemas y hacer algún boceto para construir modelos parciales. Estos bocetos hechos a escala o a tamaño natural pueden mostrarnos soluciones parciales de englobamiento de dos o más subproblemas.

De esta forma obtendremos un modelo de lo que eventualmente podrá ser la solución del problema.

9. verificación

Este es el momento de llevar a cabo una verificación del modelo o de los modelos (puede ocurrir que las soluciones posibles sean más de una). Se presenta el modelo a un determinado número de probables usuarios y se les pide que emitan un juicio sincero sobre el objeto en cuestión. Sobre la base de estos juicios se realiza un control del modelo para ver si es posible modificarlo, siempre que las observaciones posean un valor objetivo.

En base a todos estos datos ulteriores se pueden empezar a preparar los dibujos constructivos a escala o a tamaño natural, con todas las medidas exactas y todas las indicaciones necesarias para la realización del prototipo.

bocetos

Los dibujos constructivos tendrán que servir para comunicar a una persona que no esté al corriente de nuestros proyectos todas las informaciones útiles para preparar un prototipo.

El esquema del método de proyectación, ilustrado en páginas precedentes, no es un esquema fijo, no está completo y no es único y definitivo. Es lo que la experiencia nos ha dictado hasta ahora. Insistimos sin embargo en que, a pesar de tratarse de un esquema flexible, es mejor proceder, de momento, a las operaciones indicadas en el orden presentado: igual que en la proyectación del arroz verde (ver más abajo) no puede ponerse la cazuela al fuego sin el agua ni preparar el condimento una vez cocido el arroz.

No obstante, si hay alguien capaz de demostrar objetivamente que es mejor cambiar el orden de alguna operación, el diseñador está siempre dispuesto a modificar su pensamiento frente a la evidencia objetiva, y es así como cada uno puede aportar su contribución creativa a la estructuración de un método de trabajo que tiende, como es sabido, a obtener el máximo resultado con el mínimo esfuerzo.

Ejemplo:Problema arroz verde

Definición del problema arroz verde con espinacas para cuatro personas

Elementos del problema arroz, espinacas, jamón, cebolla, aceite, sal, pimienta, caldo

Recopilación de datos ¿hay alguien que lo haya hecho antes?

Análisis de datos ¿cómo lo ha hecho? ¿qué puedo aprender de él?

Creatividad ¿cómo puede conjugarse todo esto de una forma correcta?

Materiales Tecnología ¿qué arroz? ¿qué cazuela? ¿qué fuego?

Experimentación pruebas, ensayos

Modelos muestra definitiva

Verificación bien, vale para 4

Dibujos Constructivos –

Solución Arroz Verde servido en plato caliente

...

Descargar como  txt (45 Kb)  
Leer 27 páginas más »
txt