ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Plan De Cuidado

yolivepaez21 de Mayo de 2012

5.239 Palabras (21 Páginas)860 Visitas

Página 1 de 21

Introducción

En el presente trabajo se propone analizar y clasificar a los a los alotropos por lo que no deben ser considerados como verdaderos alótropos del carbono...

- ALOTROPODOS.

El concepto de alotropía fue propuesto originalmente en 1841 por el químico sueco Jöns Jacob Berzelius (1779-1848) y se define como la capacidad que poseen algunos materiales para existir en más de una forma o estructura cristalina en la misma fase o estado de la materia. Él termino alotropía suele reservarse para hacer referencia de este comportamiento en elementos puros mientras que el término polimorfismo se usa para elementos compuestos.

La existencia de una estructura cristalina o otra va a depender de la temperatura y presión exteriores. Cuando exista un cambio en las condiciones termodinámicas los átomos adoptan posiciones de mínima energía y por lo tanto de máxima estabilidad

La transformación alotrópica a menudo repercute en la densidad y en las propiedades físicas del material de ahí el interés de su estudio en áreas como la ingeniería. Por ejemplo, materiales con una estructura cúbica centrada en el cuerpo serán duros y resistentes mientras que los de estructura cúbica centrada en las caras serán materiales más blandos y fácilmente conformable.

La alotropía suele ser más evidente en los no-metales (con exclusión de los halógenos y los gases nobles) y metaloides aunque también los metales tienden a formar variedades alotrópicas.

En la transformación alotrópica se produce una absorción de calor al ser calentado o en el caso del enfriamiento, un desprendimiento de calor latente verificándose estos procesos a temperatura constante; la denominada temperatura de transformación alotrópica.

- EJEMPLO DE ESTADO ALOTRÓPICOS

Por ejemplo en la imagen se muestra la curva de enfriamiento del hierro puro. Nótese las líneas isotermas correspondientes a las temperaturas de transformación alotrópica.

- En el intervalo entre los 1535 y 1390 °C el hierro tiene la red cúbica centrada en el cuerpo y esta fase alotrópica recibe el nombre de hierro δ ( Fe δ ).

- En el intervalo entre 1390 y 910 ° C la estructura pasa a ser cúbica centrada en las caras (Fe γ).

- Finalmente por debajo de 910 °C la red pasa a ser cúbica centrada en el cuerpo (Fe α).

Está situación influye en operaciones como el temple del acero ya que el hierro al pasar de Fe γ a Fe α sufre una variación de su volumen.

El índice de coordinación pasa de 12 a 8 y la compacidad del 74% al 8%. Todo ello puede provocar que aparezcan grietas superficiales en el temple.

A altas presiones también puede estabilizarse el Fe-ε que presenta estructura hexagonal compacta.

El estaño es otro de los metales que presenta el fenómeno de alotropía. Sus formas alotrópicas mas conocidas son el estaño gris y el estaño blanco. El estaño gris, no metálico, tiene estructura cúbica y es estable a temperaturas por debajo de 13,2 ºC y el estaño blanco, metálico, de estructura tetragonal que existe de manera estable por encima de esa temperatura. Esta transformación no se da con mucha frecuencia debido a la propia cinética de la transformación, tienen que estar expuestos en esas condiciones durante largos periodos. En esta transformación la variación del volumen es del 25% lo que da lugar al desmoronamiento del estaño, adquiere color gris, aumenta su volumen y comienza a desmenuzarse hasta convertirse en polvo produciendo un sonido conocido como grito del estaño que pone de manifiesto el mal o peste del estaño.

Otro de los casos más conocidos de alotropía es el carbono. Sus variedades alotrópicas son: el diamante con estructura tetraédrica, el grafito con estructura hexagonal y los fulerenos. Los fulerenos forman una familia entera de formas alotrópicas distintas que llaman la atención por la belleza de sus estructuras. La más conocida de ellas es el buckminsterfullereno con una estructura similar a la de un globo (imagen).

El carbono es un claro de ejemplo de cómo un mismo elemento químico como el carbono puede mostrar propiedades tan dispares como el duro diamante y el blando grafito.

El fósforo es tan bien uno de los ejemplos clásicos de alotropía. Sus formas alotrópicas mas comunes son el fósforo blanco, rojo, violeta y negro. El fósforo blanco es tóxico y altamente inflamable, sus moléculas son tetraédricas. El fósforo rojo se produce al calentar el fósforo blanco a temperaturas de 270-300 ºC, es menos tóxico y reactivo que el fósforo blanco. Está formado por redes tridimensionales con cada átomo de fósforo en un entorno piramidal. Éste es el fósforo que se usa para la fabricación de cerillas. El fósforo violeta se obtiene disolviendo fósforo blanco en plomo fundido, se deja solidificar éste y se disuelve el plomo en ácido nítrico diluido. Constituye una molécula gigante. El fósforo negro se obtiene calentando fósforo blanco a 220 ºC y bajo una gran presión.

El titanio es otro de los metales alotrópicos, a temperatura ambiente tiene estructura hexagonal compacta llamada fase alfa. Por encima de 882 ºC presenta estructura cúbica centrada en el cuerpo conocida como fase beta.

El oxígeno también es un material alotrópico. Sus principales formas alotrópicas son: O2 (dioxígeno) y O3 (ozono) que de todos es conocido su importancia para proteger la Tierra de la radiación ultravioleta procedente del sol.

Otro material que cabe mencionar es el plutonio debido a su uso en la industria nuclear. El plutonio presenta hasta mas de seis formas alotrópicas diferentes. El -Pu (monoclínico hasta 122 ºC), el -Pu (monoclínico hasta 200 ºC), -Pu (ortorrómbico hasta 310 ºC), -Pu (cúbico centrado en las caras hasta 452 ºC), -Pu (tetragonal hasta 480 ºC) y -Pu (cúbica centrada en el cuerpo a partir de 480 ºC). Su densidad puede variar entre16,00 a 19,86 g/cm3 debido a los cambios de estructura, lo que complica enormemente cualquier tipo de trabajo con el metal (fundición, mecanizado, almacenamiento...).

Otros materiales alótropos son: el nitrógeno, azufre, selenio, boro, germanio, silicio, arsénico y antimonio. Entre metales cabe destacar los casos del circonio y el cobalto, aparte de los ya mencionados. Incluso en el grupo de lantánidos y actínidos, como hemos visto en el caso del plutonio, también existe la alotropía como en el Cerio, Samario, neodimio, americio, terbio, disprosio, gadolinio, prometió...

Son diferentes formas de un mismo elemento en el cuál los enlaces químicos entre los átomos son diferentes y por tanto que dan lugar a unidades moleculares también diferentes.

La propiedad que poseen determinados elementos químicos de presentarse bajo estructuras moleculares diferentes, como el oxígeno, que puede presentarse como oxígeno atmosférico (O2) y como ozono (O3), o con características físicas distintas, como el fósforo, que se presenta como fósforo rojo y fósforo blanco (P4), o el carbono, que lo hace como grafito, diamante y fulereno. Para que a un elemento se le pueda denominar como alótropo, sus diferentes estructuras moleculares deben presentarse en el mismo estado físico.

La explicación de las diferencias que presentan en sus propiedades se ha encontrado en la disposición de los átomos de carbono en el espacio. Por ejemplo, en los cristales de diamante, cada átomo de carbono está unido a cuatro átomos de carbono vecinos, adoptando una ordenación en forma de tetraedro que le confiere una particular dureza.

En el grafito, los átomos de carbono están dispuestos en capas superpuestas y en cada capa ocupan los vértices de hexágonos regulares imaginarios. De este modo, cada átomo está unido a tres de la misma capa con más intensidad y a uno de la capa próxima en forma más débil. Esto explica porqué el grafito es blando y untuoso al tacto. La mina de grafito del lápiz forma el trazo porque, al desplazarse sobre el papel, se adhiere a éste una pequeña capa de grafito.

El diamante y el grafito, por ser dos sustancias simples diferentes, sólidas, constituidas por átomos de carbono que reciben la denominación de variedades alotrópicas del elemento carbono.

El ejemplo por excelencia de alotropía es el caso del carbono, cuyas formas alotrópicas son diamante y grafito, dos ejemplos claros de la importancia de la estructura cristalina en las propiedades de los compuestos. Ambos son compuestos del carbono, pero difieren en el enlace y la posición de los átomos.

Veamos sus diferentes estructuras:

Diamante

La estructura del Diamante está basada en la red cúbica centrada en las caras o fcc . La celda primitiva consiste en dos redes fcc, la primera centrada en el punto (0,0,0), y la segunda está centrada en el (¼,¼ ,¼), o sea que está desplazada ¼ respecto la diagonal del cubo de la primera red.

...

Descargar como (para miembros actualizados) txt (34 Kb)
Leer 20 páginas más »
Disponible sólo en Clubensayos.com