ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Propiedades mecanicas


Enviado por   •  16 de Abril de 2015  •  Tesis  •  8.043 Palabras (33 Páginas)  •  223 Visitas

Página 1 de 33

2. PROPIEDADES MECANICAS

Las propiedades mecánicas definen la capacidad del material para resistir acciones externas o internas que implican la aplicación de fuerzas sobre el mismo. Esencialmente, estas fuerzas son de compresión, tensión (o extensión), flexión y de impacto.

2.1. RESISTENCIA A LA COMPRESION

La resistencia a la compresión es la carga (o peso) por unidad de área a la que el material falla (se rompe) por fracturación por cizalla o extensional (Figura 6). Esta propiedad es muy importante en la mecánica de materiales, tanto en situación no confinada (i.e., uniaxial) como confinada (i.e., triaxial). Dado que los materiales cerca de la superficie terrestre, incluyendo los edificios, suelen estar sometidos a condiciones no confinadas, consideraremos exclusivamente esta situación. En este caso, la resistencia a la compresión uniaxial (i.e., longitudinal) se mide en una prensa hidráulica que registra el esfuerzo compresor (l) aplicado sobre una probeta de material en una dirección del espacio, y la deformación lineal (l) inducida en esa misma dirección.

Figura 6. Desarrollo de fracturas extensionales y de cizalla como resultado de compresión.

Es importante indicar que los resultados obtenidos en los experimentos de resistencia a la compresión para un mismo material dependen de la forma y tamaño de la probeta. Así, los prismas y cilindros largos presentan menores resistencias a la compresión que los cubos con la misma área de sección, y estos a su vez menor que los prismas y cilindros cortos (con alturas menores que sus lados o radios). Igualmente, la resistencia a la compresión depende de la tasa de aplicación de la carga, de forma que a mayores velocidades de compresión mayor es el valor de la resistencia. La metodología experimental puede seguir la norma ASTM D3148-86, según la cual las probetas de muestra serán cilíndricas, con una relación altura/diámetro comprendida entre 2.5 y 3 (e.g., 10 cm de altura por 4 cm de diámetro). Deben ensayarse al menos 5 probetas por cada tipo de material, manteniendo la tasa de aplicación de la carga constante (entre 0.5 y 1 MPa/s). Por otra parte, hay que evitar una mala colocación de la probeta en la prensa, para asegurar una distribución homogénea del esfuerzo compresor.

El esfuerzo es igual a la fuerza aplicada por sección o superficie:

Donde: Fl es la fuerza aplicada longitudinalmente, expresada en newtons en el sistema mks (N=kg•m•s-2), dinas en el sistema cgs o kilogramos-fuerza en el sistema técnico

S es la sección de la probeta (m2) y

l es el esfuerzo lineal expresado en Pa (N/m2), dinas/cm2 o kg/m2 (las dimensiones del esfuerzo son las mismas que las de presión).

Dado que la fuerza es un vector, también lo es el esfuerzo. Así, dado que el signo de la fuerza se toma negativo por convenio cuando es compresiva, y positivo cuando es tensional, el esfuerzo compresor es negativo y el tensor es positivo.

La deformación lineal es igual al cambio de longitud experimentado por la longitud original de la probeta:

Donde: l0 (m) es la longitud original

l1 (m) es la longitud final

l (m) es el incremento de longitud de la probeta.

Puesto que al comprimir l0 es siempre mayor que l1, l y l son negativos (positivos para el caso de tensión). El valor de l (que es a dimensional) es generalmente muy pequeño para materiales pétreos (del orden de 0.01 y menores).

La deformación inducida sobre un cuerpo debido a la acción de un campo de fuerzas exteriores puede ser elástica o plástica. La deformación es elástica cuando el cuerpo recupera su forma y volumen iniciales una vez cesada la acción de las fuerzas externas. En caso contrario, la deformación es plástica (esto es, si la deformación persiste en parte). El que la deformación sea elástica o plástica depende de la naturaleza del cuerpo, de la temperatura, y del grado y tasa (velocidad) de deformación al que ha sido sometido. A temperatura constante, los materiales se comportan normalmente como elásticos cuando los esfuerzos aplicados son pequeños, si bien se tornan plásticos cuando los esfuerzos superan un cierto límite.

Para estudiar el comportamiento mecánico de los materiales, se recurre a la experimentación sometiendo a los mismos a esfuerzos progresivos y registrando la deformación resultante. Estos datos se expresan en diagramas l-l como los de la Figura 7, donde toma la forma de curvas similares (en forma) a las obtenidas en los ensayos de succión capilar. En la Figura 7 puede apreciarse un tramo de la curva l-l donde el esfuerzo es directamente proporcional a la deformación. Este comportamiento constituye la ley de Hooke, que aplica solo para pequeñas deformaciones, hasta un límite denominado límite de proporcionalidad, representado en la Figura 7 por el punto a. En este tramo, el comportamiento del material es elástico, esto es, si se disminuye el esfuerzo aplicado lentamente, se recorre el mismo tramo de la curva en sentido contrario, hasta alcanzar el punto de origen donde el esfuerzo y la deformación son nulos. La proporcionalidad entre el esfuerzo y la deformación en el tramo de la ley de Hooke permite definir el módulo de Young o módulo de elasticidad (E). Este módulo es la constante de proporcionalidad, de manera que:

Donde el módulo de elasticidad E es positivo (l y l son negativos) y presenta las mismas dimensiones que el esfuerzo ya que l es a dimensional. El valor del módulo de Young es característico para distintos materiales, por lo que puede utilizarse para comparar las características mecánicas de los mismos.

Figura 7. Curva esfuerzo-deformación para compresión, con ilustración de los tramos elástico y plástico.

Para deformaciones superiores al límite de proporcionalidad, existe un cierto tramo de la curva l-l donde el comportamiento del material es elástico, aunque no existe proporcionalidad entre el esfuerzo y la deformación. El límite en el que el comportamiento del material deja de ser elástico se denomina límite elástico, representado por el punto b de la curva en la Figura 7.

Al aumentar el esfuerzo y superarse el límite elástico (punto b), la deformación aumenta rápidamente y es en parte permanente. Así, si se disminuye el esfuerzo

...

Descargar como (para miembros actualizados)  txt (38.4 Kb)  
Leer 32 páginas más »
Disponible sólo en Clubensayos.com