ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Teoria General De Sistemas


Enviado por   •  21 de Abril de 2014  •  3.528 Palabras (15 Páginas)  •  385 Visitas

Página 1 de 15

INDICE

CONTENIDO PAG

Introducción 03

DESARROLLO

Teoría de sistemas 04

Reseña histórica 05

Características 09

Objetivos 10

Aspectos fundamentales de la teoría general de los sistemas 12

Conclusión 16

Webgrafía 17

INTRODUCCION

Los sistemas se encuentran en todo nuestro entorno por lo tanto podemos destacar el uso de la TGS en todas las ciencias y disciplinas existentes. La teoría General de Sistemas (TGS) siempre parte de lo general y va a lo particular. Integra el enfoque global con el analítico y los considera complementarios. Hace el modelamiento, después la ejecución; el control le permite perfeccionar el modelo teórico y así cíclicamente.

En todo nuestro entorno encontramos los diferentes sistemas, es decir si empezamos a analizarnos nosotros mismos encontramos el sistema Humano, sistema respiratorio… y en nuestros hogares encontramos el sistema de comunicación (lenguaje), sistema social (familia, vecinos)…en nuestros trabajos (sistema organizacional, sistema información…), y en nuestro entorno encontramos todo tipo de sistema (carro, aire, transporte, universidad, comunidad, barrio, hospital, juegos…).

TEORIA GENERAL DE LOS SISTEMAS

La Teoría General de Sistemas se basa en una búsqueda sistemática de la ley y el orden en el universo; pero a diferencia de las otras ciencias, tiende a ampliar su búsqueda, convirtiéndola en una búsqueda de un orden de órdenes, de una ley de leyes. Este es el motivo por el cual se le ha denominado la teoría general de sistemas.

En un sentido amplio, la Teoría General de Sistemas (TGS) se presenta como una forma sistemática y científica de aproximación y representación de la realidad y, al mismo tiempo, como una orientación hacia una práctica estimulante para formas de trabajo transdisciplinarias.

Para mejorar un trabajo se debe saber exactamente en que consiste y, excepto en el caso de trabajos muy simples y cortos, rara vez se tiene la certeza de conocer todos los detalles de la tarea. Por lo tanto, se deben observar todos los detalles y registrarlos.

Con el análisis de los procesos se trata de eliminar las principales deficiencias en ellos y además lograr la mejor distribución posible de la maquinaria, equipo y área de trabajo dentro de la organización. Para lograr este propósito, la simplificación del trabajo se ayuda por medio de métodos y diagramas.

Es inicialmente una extrapolación de las concepciones organísticas que Bertaan mantuvo en sus investigaciones como biólogo con la idea de superar la controversia mecanicismo-vitalismo. Con ello pretendía en un principio dar cuenta de las propiedades del organismo concebido como un todo estructurado y no como un mero agregado de partes. Ya en 1937 expuso por primera vez un esbozo de la teoría general de sistemas en la cual el punto de vista que permitía comprender a un organismo como un sistema estructurado con propiedades específicas no reducibles a las de sus partes componentes se ampliaba a todo tipo de sistemas. Es sin embargo después de la segunda guerra mundial cuando se elabora y difunde la teoría general de sistemas en compañía ya de las nuevas disciplinas y perspectivas científicas que se han ido constituyendo simultáneamente como son la cibernética, la teoría de la información. Uno de los objetivos principales de la teoría general de sistemas es ofrecer instrumentos de problemas específicos de las ciencias biológicas, sociológicas, que no podían tratarse adecuadamente con el método analítico y en un marco mecanicista

.

Sin embargo, las definiciones y principios de la teoría de sistemas valen para cualquier sistema y éstos pueden ser tanto físicos, como biológicos, sociales, culturales o conceptuales. A partir de ella nociones como las de teleología, conducta orientada hacia un fin, control, totalidad, organización, que desde una perspectiva mecanicista son consideradas como nociones metafísicas, pueden recibir un tratamiento operativo y científico.

RESEÑA HISTÓRICA

La Teoría General de Sistemas es la historia de una filosofía y un método para analizar y estudiar la realidad y desarrollar modelos, a partir de los cuales puedo intentar una aproximación paulatina a la percepción de una parte de esa globalidad que es el Universo, configurando un modelo de la misma no aislado del resto al que llamaremos sistema.

Todos los sistemas concebidos de esta forma por un individuo dan lugar a un modelo del Universo, una cosmovisión cuya clave es la convicción de que cualquier parte de la Creación, por pequeña que sea, que podamos considerar, juega un papel y no puede ser estudiada ni captada su realidad última en un contexto aislado.

Su paradigma, es decir, su concreción práctica, es la Sistémica o Ciencia de los Sistemas, y su puesta en obra es también un ejercicio de humildad, ya que un buen sistémico ha de partir del reconocimiento de su propia limitación y de la necesidad de colaborar con otros hombres para llegar a captar la realidad en la forma más adecuada para los fines propuestos.

Es a través de esta posibilidad de integración como la sistémica, el paradigma de la complejidad, mezcla de arte, ciencia, intuición y heurística, que permite modelar sistemas complejos, (ingeniería de los sistemas complejos), es hoy un sistema y una filosofía de pensamiento en plena expansión en cuanto a las ciencias que confluyen en él: desde los campos del conocimientos tradicionalmente asociados a ella, como son las ciencias de la ingeniería y la organización, a las que, aunque no tan jóvenes, se van incorporando, como las ciencias políticas y morales, la sociología, la biología, la psicología y la psiquiatría, la lingüística y la semiótica, o las que por su juventud han sido integradas casi desde su nacimiento, como ocurre con la informática, la inteligencia artificial o la ecología.

En cuanto al estudio de fenómenos, en su vía de realizar el clásico proceso análisis-síntesis, el analista sistémico, al diseccionar los diferentes conceptos de un sistema, jamás puede perder de vista el propio sistema globalmente considerado, de forma que cuando se plantee una determinada actuación sobre una componente tiene que considerar al mismo tiempo qué interacciones van a generarse con las otras componentes y cómo va a influir todo ello en el sistema global, teniendo siempre presente el principio de que la suma de óptimos individuales puede no ser óptima para el sistema.

Todo sistema, para sobrevivir, necesita realimentación interna e intercambio de flujos de muy variada naturaleza con su entorno a fin de evitar el crecimiento constante de su entropía, que lo llevaría a su muerte térmica.

Este intercambio de flujos debería permitir la admisión de variedad para reducir la entropía. La negativa a asumir esta incorporación de variedad en sistemas sociales y organizaciones suele conducir también a graves problemas políticos y económicos; los fundamentalismos de todo tipo que están surgiendo en tantas partes del mundo son ejemplos paradigmáticos de esta negación de la variedad al pretender desarrollar al precio que sea, un modelo de la variedad al pretender desarrollar al precio que sea, un modelo demasiado uniforme de sociedad, sea en lo cultural, lo lingüístico, lo religioso, o en lo económico, cuando no en todos ellos.

La Teoría General de los Sistemas (T.G.S.) propuesta, más que fundada, por L. von Bertalanffy aparece como una meta-teoría, una teoría de teorías, que partiendo del muy abstracto concepto de sistema busca reglas de valor general, aplicables a cualquier sistema y en cualquier nivel de la realidad.

La T.G.S. surgió debido a la necesidad de abordar científicamente la comprensión de los sistemas concretos que forman la realidad, generalmente complejos y únicos, resultantes de una historia particular, en lugar de sistemas abstractos como los que estudia la Física. Desde el Renacimiento la ciencia operaba aislando:

Autores De La Teoría General De Sistemas

Según Bertalanffy (1976) se puede hablar de una filosofía de sistemas, ya que toda teoría científica de gran alcance tiene aspectos metafísicos. El autor señala que "teoría" no debe entenderse en su sentido restringido, esto es, matemático, sino que la palabra teoría está más cercana, en su definición, a la idea de paradigma de Kuhn. El distingue en la filosofía de sistemas una ontología de sistemas, una epistemología de sistemas y una filosofía de valores de sistemas.

La ontología se aboca a la definición de un sistema y al entendimiento de cómo están plasmados los sistemas en los distintos niveles del mundo de la observación, es decir, la ontología se preocupa de problemas tales como el distinguir un sistema real de un sistema conceptual. Los sistemas reales son, por ejemplo, galaxias, perros, células y átomos. Los sistemas conceptuales son la lógica, las matemáticas, la música y, en general, toda construcción simbólica. Bertalanffy entiende la ciencia como un subsistema del sistema conceptual, definiéndola como un sistema abstraído, es decir, un sistema conceptual correspondiente a la realidad. El señala que la distinción entre sistema real y conceptual está sujeta a debate, por lo que no debe considerarse en forma rígida.

La epistemología de sistemas se refiere a la distancia de la TGS con respecto al positivismo o empirismo lógico. Bertalanffy, refiriéndose a si mismo, dice: "En filosofía, la formación del autor siguió la tradición del neopositivismo del grupo de Moritz Schlick, posteriormente llamado Círculo de Viena. Pero, como tenía que ser, su interés en el misticismo alemán, el relativismo histórico de Spengler y la historia del arte, aunado a otras actitudes no ortodoxas, le impidió llegar a ser un buen positivista. Eran más fuertes sus lazos con el grupo berlinés de la Sociedad de Filosofía Empírica en los años veintitantos; allí descollaban el filósofo-físico Hans Reichenbach, el psicólogo A. Herzberg y el ingeniero Parseval (inventor del dirigible)". Bertalanffy señala que la epistemología del positivismo lógico es fisicalista y atomista. Fisicalista en el sentido que considera el lenguaje de la ciencia de la física como el único lenguaje de la ciencia y, por lo tanto, la física como el único modelo de ciencia. Atomista en el sentido que busca fundamentos últimos sobre los cuales asentar el conocimiento, que tendrían el carácter de indubitable.

Por otro lado, la TGS no comparte la causalidad lineal o unidireccional, la tesis que la percepción es una reflexión de cosas reales o el conocimiento una aproximación a la verdad o la realidad. Bertalanffy señala "[La realidad] es una interacción entre conocedor y conocido, dependiente de múltiples factores de naturaleza biológica, psicológica, cultural, lingüística, etc. La propia física nos enseña que no hay entidades últimas tales como corpúsculos u ondas, que existan independientemente del observador. Esto conduce a una filosofía ‘perspectivista’ para la cual la física, sin dejar de reconocerle logros en su campo y en otros, no representa el monopolio del conocimiento. Frente al reduccionismo y las teorías que declaran que la realidad no es ‘nada sino’ (un montón de partículas físicas, genes, reflejos, pulsiones o lo que sea), vemos la ciencia como una de las ‘perspectivas’ que el hombre, con su dotación y servidumbre biológica, cultural y lingüística, ha creado para vérselas con el universo al cual está ‘arrojado’ o, más bien, al que está adaptado merced a la evolución y la historia".

La filosofía de valores de sistemas se preocupa de la relación entre los seres humanos y el mundo, pues Bertalanffy señala que la imagen de ser humano diferirá si se entiende el mundo como partículas físicas gobernadas por el azar o como un orden jerárquico simbólico. La TGS no acepta ninguna de esas visiones de mundo, sino que opta por una visión heurística.

Finalmente, Bertalanffy reconoce que la teoría de sistemas comprende un conjunto de enfoques que difieren en estilo y propósito, entre las cuales se encuentra la teoría de conjuntos (Mesarovic) , teoría de las redes (Rapoport), cibernética (Wiener), teoría de la información (Shannon y Weaver), teoría de los autómatas (Turing), teoría de los juegos (von Neumann), entre otras. Por eso, la práctica del análisis aplicado de sistemas tiene que aplicar diversos modelos, de acuerdo con la naturaleza del caso y con criterios operacionales, aun cuando algunos conceptos, modelos y principios de la TGS –como el orden jerárquico, la diferenciación progresiva, la retroalimentación, etc.– Son aplicables a grandes rasgos a sistemas materiales, psicológicos y socioculturales.

CARACTERÍSTICAS DE LA TEORÍA GENERAL DE SISTEMAS

Un sistema es un conjunto de objetos unidos por alguna forma de interacción o Interdependencia. Cualquier conjunto de partes unidas entre sí puede ser considerado un sistema, desde que las relaciones entre las partes y el comportamiento del todo sea el foco de atención. Un conjunto de partes que se atraen mutuamente (como el sistema solar), o un grupo de personas en una organización, una red industrial, un circuito eléctrico, un computador o un ser vivo pueden ser visualizados como sistemas.

Realmente, es difícil decir dónde comienza y dónde termina determinado sistema. Los límites (fronteras) entre el sistema y su ambiente admiten cierta arbitrariedad.

Dadas estas características se puede imaginar con facilidad una empresa, un hospital, una universidad, como un sistema, y aplicar los principios mencionados a esa entidad. Por ejemplo las organizaciones, como es evidente, tienen muchos componentes que interactúan: producción, comercialización, contabilidad, investigación y desarrollo, todos los cuales dependen unos de otros.

Al tratar de comprender la organización se le debe encarar en su complejidad total, en lugar de considerarla simplemente a través de un componente o un área funcional. El estudio de un sistema de producción no produciría un análisis satisfactorio si se dejara de lado el sistema de comercialización.

LOS OBJETIVOS ORIGINALES DE LA TEORÍA GENERAL DE SISTEMAS SON LOS SIGUIENTES:

• Impulsar el desarrollo de una terminología general que permita describirlas características, funciones y comportamientos del sistema en general.

• Desarrollar un conjunto de leyes aplicables a todos estos comportamientos.

• Promover la unidad de las ciencias y obtener la uniformidad del lenguaje científico.

• Impulsar el desarrollo de una terminología general que permita describir las características, funciones y comportamientos sistémicos.

• Desarrollar un conjunto de leyes aplicables a todos estos comportamientos y, por último,

• Promover una formalización (matemática) de estas leyes.

La primera formulación en tal sentido es atribuible al biólogo Ludwig von Bertalanffy (1901-1972), quien acuñó la denominación "Teoría General de Sistemas". Para él, la TGS debería constituirse en un mecanismo de integración entre las ciencias naturales y sociales y ser al mismo tiempo un instrumento básico para la formación y preparación de científicos.

Sobre estas bases se constituyó en 1954 la Society for General Systems Research, cuyos objetivos fueron los siguientes:

• Investigar el isomorfismo de conceptos, leyes y modelos en varios campos y facilitar las transferencias entre aquellos.

• Promoción y desarrollo de modelos teóricos en campos que carecen de ellos.

• Reducir la duplicación de los esfuerzos teóricos

• Promover la unidad de la ciencia a través de principios conceptuales y metodológicos unificadores.

Como ha sido señalado, la perspectiva de la TGS surge en respuesta al agotamiento e inaplicabilidad de los enfoques analítico-reduccionistas y sus principios mecánico-causales (Arnold & Rodríguez, 1990b). Se desprende que el principio clave en que se basa la TGS es la noción de totalidad orgánica, mientras que el paradigma anterior estaba fundado en una imagen inorgánica del mundo.

A poco la TGS concitó un gran interés y pronto se desarrollaron bajo su alero diversas tendencias, entre las que destacan la cibernética (N. Wiener), la teoría de la información (C.Shannon y W.Weaver) y la dinámica de sistemas (J.Forrester).

Si bien el campo de aplicaciones de la TGS no reconoce limitaciones, al usarla en fenómenos humanos, sociales y culturales se advierte que sus raíces están en el área de los sistemas naturales (organismos) y en el de los sistemas artificiales (máquinas). Mientras más equivalencias reconozcamos entre organismos, máquinas, hombres y formas de organización social, mayores serán las posibilidades para aplicar correctamente el enfoque de la TGS, pero mientras más experimentemos los atributos que caracterizan lo humano, lo social y lo cultural y sus correspondientes sistemas, quedarán en evidencia sus inadecuaciones y deficiencias (sistemas triviales).

No obstante sus limitaciones, y si bien reconocemos que la TGS aporta en la actualidad sólo aspectos parciales para una moderna Teoría General de Sistemas Sociales (TGSS), resulta interesante examinarla con detalle. Entendemos que es en ella donde se fijan las distinciones conceptuales fundantes que han facilitado el camino para la introducción de su perspectiva, especialmente en los estudios ecológico culturales (e.g. M.Sahlins, R.Rappaport), politológicos (e.g. K.Deutsch, D.Easton), organizaciones y empresas (e.g. D.Katz y R.Kahn) y otras especialidades antropológicas y sociológicas.

ASPECTOS FUNDAMENTALES DE LA TEORÍA GENERAL

DE LOS SISTEMAS (T.G.S.)

Emiro Rotundo en su libro "Introducción a la Teoría General de Sistemas" (1973), afirma que la cibernética considera "sistema", cualquier cosa compuesta de parte o elementos que se relacionan e interactúan entre sí, tales como un átomo, una máquina, un organismo, un lenguaje, una economía, una ecuación.

La palabra sistema es fundamentalmente un término para designar la conectividad de las partes entre sí.

Otras connotaciones de la palabra sistema son:

"Sistema es un conjunto de elementos interdependientes"

"Sistema es un grupo de unidades combinadas para formar un todo organizado y cumplir una función determinada"

"Sistema es un conjunto organizado de cosas o partes interactuantes e interdependientes, que se relacionan formando un todo unitario y complejo"

La Teoría General de los Sistemas se basa en dos pilares básicos: aportes semánticos y aportes metodológicos.

• Interrelación e interdependencia de objetos, atributos, acontecimientos y otros aspectos similares. Toda teoría de los sistemas debe tener en cuenta los elementos del sistema, la interrelación existente entre los mismos y la interdependencia de los componentes del sistema. Los elementos no relacionados e independientes no pueden constituir nunca un sistema.

• Totalidad. El enfoque de los sistemas no es un enfoque analítico, en el cual el todo se descompone en sus partes constituyentes para luego estudiar en forma aislada cada uno de los elementos descompuestos: se trata más bien de un tipo gestáltico de enfoque, que trata de encarar el todo con todas sus partes interrelacionadas e interdependientes en interacción.

• Búsqueda de objetivos. Todos los sistemas incluyen componentes que interactúan, y la interacción hace que se alcance alguna meta, un estado final o una posición de equilibrio.

• Insumos y productos. Todos los sistemas dependen de algunos insumos para generar las actividades que finalmente originaran el logro de una meta. Todos los sistemas originan algunos productos que otros sistemas necesitan.

• Transformación. Todos los sistemas son transformadores de entradas en salidas. Entre las entradas se pueden incluir informaciones, actividades, una fuente de energía, conferencias, lecturas, materias primas, etc. Lo que recibe el sistema es modificado por éste de tal modo que la forma de la salida difiere de la forma de entrada.

• Entropía. La entropía está relacionada con la tendencia natural de los objetos a caer en un estado de desorden. Todos los sistemas no vivos tienden hacia el desorden; si los deja aislados, perderán con el tiempo todo movimiento y degenerarán, convirtiéndose en una masa inerte.

• Regulación. Si los sistemas son conjuntos de componentes interrelacionados e interdependientes en interacción, los componentes interactuantes deben ser regulados (manejados) de alguna manera para que los objetivos (las metas) del sistema finalmente se realicen.

• Jerarquía. Generalmente todos los sistemas son complejos, integrados por subsistemas más pequeños. El término "jerarquía" implica la introducción de sistemas en otros sistemas.

• Diferenciación. En los sistemas complejos las unidades especializadas desempeñan funciones especializadas. Esta diferenciación de las funciones por componentes es una característica de todos los sistemas y permite al sistema focal adaptarse a su ambiente.

• Equifinalidad. Esta característica de los sistemas abiertos afirma que los resultados finales se pueden lograr con diferentes condiciones iniciales y de maneras diferentes. Contrasta con la relación de causa y efecto del sistema cerrado, que indica que sólo existe un camino óptimo para lograr un objetivo dado. Para las organizaciones complejas implica la existencia de una diversidad de entradas que se pueden utilizar y la posibilidad de transformar las mismas de diversas maneras. (pp. 42-43)

• Dadas estas características se puede imaginar con facilidad una empresa, un hospital, una universidad, como un sistema, y aplicar los principios mencionados a esa entidad. Por ejemplo las organizaciones, como es evidente, tienen muchos componentes que interactúan: producción, comercialización, contabilidad, investigación y desarrollo, todos los cuales dependen unos de otros.

Al tratar de comprender la organización se le debe encarar en su complejidad total, en lugar de considerarla simplemente a través de un componente o un área funcional. El estudio de un sistema de producción no produciría un análisis satisfactorio si se dejara de lado el sistema de comercialización.

CONCLUSION

Es una teoría muy importante a partir de ella cambio nuestra forma de ver el mundo, la teoría de sistemas nos muestra al universo como un gran sistema con subsistemas componentes y en un metasistema que lo contiene, casi todos los fenómenos pueden verse bajo el paradigma de sistemas.

Un sistema es conjunto interrelacionados de elementos con un objetivo común. Muchas de las propiedades del sistema mayor se repiten en el sistema menor. Asimismo hay diferentes tipos de sistemas o niveles de sistema: no es lo mismo un sistema mecánico con movimientos predeterminados que un sistema adaptativo que puede evoluciona según el contexto para recibir esta información del contexto tiene receptores especializados.

WEBGRAFIA

Teoría de sistemas html.rincondelvago.com Fecha: 19/04/2014 hora 11:00 am

Teoría general de sistemas - Monografias.com www.monografias.com 19/04/2014 hora 11:09 am

Teoría de sistemas - Wikipedia, la enciclopedia libre es.wikipedia.org 19/04/2014 hora 11:49 am

CARACTERISTICAS DE LA TEORÍA GENERAL DE SISTEMAS es.scribd.com 19/04/2014 hora 1:14 am

...

Descargar como  txt (23.2 Kb)  
Leer 14 páginas más »
txt