ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Generalidades De La Historia


Enviado por   •  16 de Septiembre de 2014  •  2.142 Palabras (9 Páginas)  •  305 Visitas

Página 1 de 9

Componentes de un vector[editar]

Componentes del vector.

Un vector en el espacio euclídeo tridimensional se puede expresar como una combinación lineal de tres vectores unitarios o versores perpendiculares entre sí que constituyen una base vectorial.

En coordenadas cartesianas, los vectores unitarios se representan por , , , paralelos a los ejes de coordenadas x, y, z positivos. Las componentes del vector en una base vectorial predeterminada pueden escribirse entre paréntesis y separadas con comas:

o expresarse como una combinación de los vectores unitarios definidos en la base vectorial. Así, en un sistema de coordenadas cartesiano, será

Estas representaciones son equivalentes entre sí, y los valores ax, ay, az, son las componentes de un vector que, salvo que se indique lo contrario, son números reales.

Una representación conveniente de las magnitudes vectoriales es mediante un vector columna o un vector fila, particularmente cuando están implicadas operaciones matrices (tales como el cambio de base), del modo siguiente:

Con esta notación, los vectores cartesianos quedan expresados en la forma:

El lema de Zorn, consecuencia del axioma de elección, permite establecer que todo espacio vectorial admite una base vectorial, por lo que todo vector es representable como el producto de unas componentes respecto a dicha base. Dado un vector sólo existen un número finito de componentes diferentes de cero.

Representación gráfica de los vectores[editar]

Aunque hay quien no recomienda el uso de gráficos para evitar la confusión de conceptos y la inducción al error, sin investigación que lo corrobore, también es cierto que la memoria se estimula con mejores resultados. Para ello:

Se llama vector a la representación visual con el símbolo de flecha( un segmento y un triángulo en un extremo).

La rectitud visual de una flecha o curvatura de la misma, no la hace diferente en símbolo si los dos extremos permanecen en el mismo lugar y orden.

El que una flecha cierre en sí misma, indica la ausencia de efectos algebraicos.

Para visualizar la suma de vectores se hará encadenándolos, es decir, uniendo el extremo que tiene un triángulo (final) del primer vector con el extremo que no lo tiene (origen) del segundo vector manteniendo la dirección y distancia, propias al espacio, de sus dos extremos, ya que estas dos cualidades los distingue visualmente de otros vectores.

Los escalares se representarán con una línea de trazos a modo, exclusivamente, de distinción ya que no siempre pertenecen al espacio de vectores.

Se examinan cada uno de los casos que aparecen en la definición de las operaciones suma de vectores y producto por un escalar:

Suma de vectores[editar]

La definición suma de vectores en el orden u+v produce otro vector, es como encadenar, siempre visualmente, un vector u y luego uno v. Diremos que u+v se simplifica como un vector w o que w descompone como suma de vectores u y v.

1) Decir que u+v=v+u, es exigir que las dos sumas simplifiquen en el mismo vector, en negro. Véase que en física los vectores en rojo simulan la descomposición de fuerzas ejercidas por el vector negro en su origen, y se representa con un paralelogramo.

2) Decir que u+(v+w)=(u+v)+w, es exigir que las simplificaciones de sumas de vectores puedan ser optativas en cualquier cadena de sumas.

3) Decir que existe un vector cero (elemento neutro) tal que u+0=u, equivale a exigir que exista un vector incapaz de efectuar, mediante la suma, modificación alguna a todos los vectores.

4) Decir que u+(-u)=0, es exigir la existencia de un elemento opuesto, -u, que sumado a u simplifique en un vector cero.

Producto por un escalar[editar]

La definición producto por un escalar produce otro vector; es como modificar el extremo final del vector u, siempre visualmente.

Por un lado la representación del producto en el caso que el cuerpo de los escalares sea modifica, visualmente, la longitud de la imagen del vector, quedando ambos siempre superpuestos; por otro lado las representaciones en el caso que además de modificar la longitud, también agrega rotaciones, para facilitarlas visualmente considérense centradas en el origen del vector, siendo estas modificaciones un poco más expresivas, visualmente, pero no más fáciles que en el caso real:

a)Decir que a(bu)=(ab)u, es exigir que los productos encadenados a(b(u)) pueden simplificarse como uno, c=ab, luego (ab)u queda como cu.

b) Decir que existe el escalar 1 tal que 1u=u, equivale a decir exista un escalar incapaz de efectuar, mediante producto, modificación alguna a todos los vectores.

c) Decir que a(u+v)=au+av, es exigir la propiedad distributiva respecto la suma vectorial.

d) Decir que (a+b)u=au+bu, es exigir la propiedad distributiva respecto la suma escalar.

Para el caso real se han de eliminar las rotaciones de los ejemplos anteriores.

Operaciones con vectores[editar]

Suma de vectores[editar]

Para sumar dos vectores libres (vector y vector) se escogen como representantes dos vectores tales que el

...

Descargar como (para miembros actualizados)  txt (14 Kb)  
Leer 8 páginas más »
Disponible sólo en Clubensayos.com