Historia de mexico y sus caracteristicas
AuroravaleriaEnsayo7 de Junio de 2014
788 Palabras (4 Páginas)359 Visitas
historia de mexico y sus caracteristicas
Conocimiento intuitivo:
• Sentido natural del número: durante mucho tiempo se ha creído que los niños pequeños carecen esencialmente de pensamiento matemático. Para ver si un niño pequeño pude discriminar entre conjuntos de cantidades distintas, se realiza un experimento que fundamentalmente consiste en mostrar al niño 3 objetos, por ejemplo, durante un tiempo determinado. Pasado un tiempo, se le añade o se le quita un objeto y si el niño no le presta atención, será porque no se ha percatado de la diferencia. Por el contrario, si se ha percatado de la diferencia le pondrá de nuevo más atención porque le parecerá algo nuevo. El alcance y la precisión del sentido numérico de un niño pequeño son limitados. Los niños pequeños no pueden distinguir entre conjuntos mayores como cuatro y cinco, es decir, aunque los niños pequeños distinguen entre números pequeños quizá no puedan ordenarlos por orden de magnitud.
• Nociones intuitivas de magnitud y equivalencia: pese a todo, el sentido numérico básico de los niños constituye la base del desarrollo matemático. Cuando los niños comienzan a andar, no sólo distinguen entre conjuntos de tamaño diferente sino que pueden hacer comparaciones gruesas entre magnitudes. Ya a los dos años de edad aproximadamente, los niños aprenden palabras para expresar relaciones matemáticas que pueden asociarse a sus experiencias concretas. Pueden comprender igual, diferente y más. Respecto a la equivalencia, hemos de destacar investigaciones recientes que confirman que cuando a los niños se les pide que determinen cuál de dos conjuntos tiene “más”, los niños de tres años de edad, los preescolares atrasados y los niños pequeños de culturas no alfabetizadas pueden hacerlo rápidamente y sin contar. Casi todos los niños que se incorporan a la escuela deberían ser capaces de distinguir y nombrar como “más” a el mayor de dos conjuntos manifiestamente distintos.
• Nociones intuitivas de la adición y la sustracción: los niños reconocen muy pronto que añadir un objeto a una colección hace que sea “más” y que quitar un objeto hace que sea “menos”. Pero el problema surge con la aritmética intuitiva que es imprecisa. Ya que un niño pequeño cree que 5 + 4 es “más que” 9 + 2 porque para ellos se añaden más objetos al primer recipiente que al segundo. Evidentemente la aritmética intuitiva es imprecisa.
Conocimiento informal:
• Una prolongación práctica. Los niños, encuentran que el conocimiento intuitivo, simple y llanamente, no es suficiente para abordar tareas cuantitativas. Por tanto, se apoyan cada vez más en instrumentos más precisos fiables: numerar y contar. En realidad, poco después de empezar a hablar, los niños empiezan a aprender los nombres de los números. Hacia los dos años, emplean la palabra “dos” para designar todas las pluralidades; hacia los dos años y medio, los niños empiezan a utilizar la palabra “tres” para designar a muchos objetos. Por tanto, contar se basa en el conocimiento intuitivo y lo complementa en gran parte. Mediante el empleo de la percepción directa juntamente con contar, los niños descubren que las etiquetas numéricas como tres no están ligadas a la apariencia de conjuntos y objetos y son útiles para especificar conjuntos equivalentes. Contar coloca el número abstracto y la aritmética elemental al alcance del niño pequeño.
• Limitaciones: aunque la matemática informal representa una elaboración fundamentalmente importante de la matemática intuitiva, también presenta limitaciones prácticas. El contar y la aritmética informal se hacen cada vez menos útiles a medida que los números se hacen mayores. A medida que los números aumentan, los métodos informales se van haciendo cada vez más propensos al error. En realidad, los niños pueden llegar a ser completamente
...