ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

PRINCIPIO DE LA SUMA O ADICCION

asdrubal19Examen5 de Octubre de 2014

944 Palabras (4 Páginas)477 Visitas

Página 1 de 4

ción:

M = Número de maneras de seleccionar una lavadora Whirpool

N = Número de maneras de seleccionar una lavadora de la marca Easy

W = Número de maneras de seleccionar una lavadora de la marca General Electric

M = 2 x 4 x 2 = 16 maneras

N = 3 x 2 x 2 = 12 maneras

W = 1 x 2 x 1 = 2 maneras

M + N + W = 16 + 12 + 2 = 30 maneras de seleccionar una lavadora

 PRINCIPIO DE LA SUMA O ADICCION

Si una primera operación puede realizarse de m maneras y una segunda operación de n maneras, entonces una operación o la otra pueden efectuarse de:

m+n maneras.

Ejemplo:

Una pareja que se tiene que casar, junta dinero para el enganche de su casa, en el fraccionamiento lomas de la presa le ofrecen un modelo económico ó un condominio, en el fraccionamiento Playas le ofrecen un modelo económico como modelos un residencial, un californiano y un provenzal. ¿Cuántas alternativas diferentes de vivienda le ofrecen a la pareja?

PRESA PLAYAS

Económico Residencial

Condominio Californiano

Provenzal

m=2 n=3

2+3= 5 maneras

 PRINCIPIO DE PERMUTACION:

A diferencia de la fórmula de la multiplicación, se la utiliza para determinar el número de posibles arreglos cuando solo hay un solo grupo de objetos. Permutación: un arreglos o posición de r objetos seleccionados de un solo grupo de n objetos posibles. Si nos damos cuenta los arreglos a, b, c y b, a, c son permutaciones diferentes, la fórmula que se utiliza para contar el número total de permutaciones distintas es:

FÓRMULA: n P r = n! (n - r)

Ejemplo: ¿Cómo se puede designar los cuatro primeros lugares de un concurso, donde existen 15 participantes?

Aplicando la fórmula de la permutación tenemos:

n P r = n! (n - r)! = 15! = 15*14*13*12 *11*10*9*8*7*6*5*4*3*2*1 (15-4)! 11*10*9*8*7*6*5*4*3*2*1 = 32760

Donde: n= número total de objetos r= número de objetos seleccionados!= factorial, producto de los números naturales entre 1 y n.

NOTA: se puede cancelar números cuando se tiene las mismas cifras en numerador y denominador.

 PRINCIPIO DE COMBINACION:

En una permutación, el orden de los objetos de cada posible resultado es diferente. Si el orden de los objetos no es importante, cada uno de estos resultados se denomina combinación. Por ejemplo, si se quiere formar un equipo de trabajo formado por 2 personas seleccionadas de un grupo de tres (A, B y C). Si en el equipo hay dos funciones diferentes, entonces si importa el orden, los resultados serán permutaciones. Por el contrario si en el equipo no hay funciones definidas, entonces no importa el orden y los resultados serán combinaciones. Los resultados en ambos casos son los siguientes:

Permutaciones: AB, AC, BA, CA, BC, CB

Combinaciones: AB, AC, BC

Combinaciones: Es el número de formas de seleccionar r objetos de un grupo de n objetos sin importar el orden.

La fórmula de combinaciones es:

n C r = n! r! (n – r)

Ejemplo: En una compañía se quiere establecer un código de colores para identificar cada una de las 42 partes de un producto. Se quiere marcar con 3 colores de un total de 7 cada una de

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com