Bodega De Datos
morelindo21 de Agosto de 2013
2.582 Palabras (11 Páginas)304 Visitas
INTRODUCCIÓN
Deseamos orientarnos y capacitarnos en la construcción de base de datos mediante el desarrollo y nivel de bodega de datos debido a la importancia en el mercado actual que cada vez maneja una población más extensa en el campo de la información.
BODEGA DE DATOS ( Data Warehouse )
Es un conjunto de datos integrados o orientados a una materia, que varían con el tiempo y que no son transitorios, los cuales soportan el proceso de toma de decisiones de la administración y esta orientada al manejo de grandes volúmenes de datos provenientes de diversas fuentes o diversos tipos.
Estos datos cubren largos períodos de tiempo lo que trae consigo que se tengan diferentes esquemas de los datos fuentes, La concentración de esta información esta orientada a su análisis para apoyar la toma de decisiones oportunas y fundamentadas, Previo a su utilización se debe aplicar procesos de análisis, selección y transferencia de datos seleccionados desde las fuentes.
RIESGOS.
- Desactualización de esquemas a nuevas necesidades del negocio.
- Acceso no restringido a objetos de Data Warehouese.
- Respaldo de los datos almacenados
SISTEMA OPERATIVO
La bodega de datos se encuentra sobre la plataforma del sistema operativo. La seguridad representada en la disponibilidad, confidencialidad y controles de accesos y privilegios sobre las áreas de almacenamiento y procesamiento están en gran medida dependientes de esta plataforma.
RIESGOS
- El Sistema operativo no apoya las políticas de acceso establecidas desde la administración de la bodega de datos.
- Los recursos requeridos par los procesos de actualización sean mal atendidos por el sistema operativo.
- El sistema operativo permite que programas o usuarios ejecuten y utilicen recursos protegidos desde la bodega de datos.
- El sistema operativo no otorga los recursos necesarios para la realización de procesos de alto costo computacional.
RED
Es la infraestructura de comunicación que permite que los diferentes componentes intercambien información. La cantidad de datos contenidos en Data Warehouse incrementa su importancia.
RIESGOS
- Acceso al sistema desde elementos externos sin autorización (aplicaciones, personas, etc.)
- La red se convierta en un cuello de botella para lo operación del sistema.
- La inexistencia de elementos que respalden un componente que falle
OLAP: Las siglas OLAP significan en inglés Online Analytical Processing, una categoría de herramientas de software que provee análisis de datos almacenados en una base de datos multidimensional. Las herramientas OLAP permiten a los usuarios analizar diferentes dimensiones de datos.
SQL: Es la abreviación de Structured Query Lenguaje. Es un lenguaje estandarizado de consultas para pedir información desde una base de datos.
¿Cómo se puede conformar la bodega de datos?
Aparte de las consideraciones técnicas y económicas, existen tres aspectos importantísimos que intervienen en el establecimiento y el uso de una bodega de datos: el diseño, el mantenimiento, y el uso de la misma.
El diseño requiere soportarse en un análisis profundo de la institución o del áreas funcionales responsables de la utilización de la bodega, las fuentes de datos que alimentarán la bodega, y unas personas capacitadas en la correcta estructuración de la bodega.
De las decisiones aquí tomadas, depende la velocidad de búsqueda y la calidad y oportunidad obtenida en las respuestas a nuestras inquietudes. Una decisión mal tomada en este aspecto puede significar demoras de días en vez de horas o minutos para la obtención de las respuestas requeridas, o incluso, que la bodega no esté en capacidad de responder las preguntas claves para la organización.
El mantenimiento de la información se convierte en parte fundamental, una vez la bodega de datos forma parte integral de los sistemas de información de la institución o compañía. Según los expertos, uno de los principales problemas que se vive con los proyectos de bodegas de datos es la obsolescencia de su información. Se actualiza la información para el proyecto piloto, pero no se establecen mecanismos de actualización permanente que siempre garanticen la oportunidad de la misma.
Por último, pero no menos importante, están las decisiones que se hagan sobre el uso que se hará de la bodega de datos, resaltándose en este aspecto la capacidad y entrenamiento que deben tener los distintos usuarios para buscar relaciones y analizar la información.
Si bien es cierto que la bodega de datos agiliza esta tarea, es deber de los usuarios de la bodega saber cómo preguntar y cómo interpretar y poner en práctica los resultados que obtienen, pero además, la institución debe definir en forma muy clara, el ámbito empresarial en el que operará la bodega, las dependencias administrativas de la organización que van a tener acceso a la bodega de datos y las consultas que ésta debe responder inicialmente.
REQUERIMIENTOS PARA LA CONSTRUCCIÓN DE UNA BODEGA DE DATOS
HARDWARE
Se requiere de un servidor para el almacenamiento y manejo de la base de datos corporativa; este servidor se recomienda que sea altamente escalable, pues algunas veces el proyecto de construcción de la bodega presenta redimensionamiento a medida que se avanza en la implementación. La capacidad inicial de almacenamiento estará determinada por los requerimientos de información histórica presentados por la empresa y por la perspectiva de crecimiento que se tenga.
Dependiendo del diseño del sistema, puede ser necesario contar con un segundo servidor para las herramientas de consulta de datos. Este equipo debe tener el sistema operativo recomendado por el proveedor de la herramienta a utilizar, siendo el más usado alguna versión de Windows.
Las estaciones de trabajo de cada usuario deberán cumplir con las características recomendadas por el proveedor de la herramienta de consulta seleccionada.
HERRAMIENTAS DE SOFTWARE
Las herramientas se clasifican en cuatro categorías básicas: Herramientas de Almacenamiento (bases de datos, multidimensionales), Herramientas de Extracción y Colección, Herramientas para Reportes de Usuario Final y Herramientas para Análisis Inteligentes.
Herramientas de Almacenamiento: corresponde a la herramienta en la cual se irán a almacenar los datos. Existen muchas opciones dependiendo del volumen de los datos, presupuesto y capacidad de su sistema. Cada uno de los sistemas de administración de bases de datos, como Oracle, DB2, Informix, TeraData, Sybase, etc, tienen una facilidad de Data Warehouse.
Herramientas de Extracción y Colección: Ayudan a definir, acumular, totalizar y filtrar los datos de sus sistemas transaccionales en el Data Warehouse. La mayoría de esas herramientas son desarrolladas por el personal interno de la compañía dado el gran conocimiento que tienen de los sistemas transaccionales.
Herramientas para Elaboración de Reportes a Usuarios Finales: Es la interfase vista por el usuario. Al usuario se le debe proveer un mecanismo para que vea los datos a un alto nivel y que entonces obtenga con ello la solución a preguntas específicas. Existen muchas herramientas, incluyendo Cognos Powerplay, Business Objects, SAS, ShowCase Strategy etc.
Herramientas de Análisis Inteligente: Entre ellas están las de empresas como IBM, SAS, Arbor, Cognos, Business Objects, entre otras. Estas herramientas han sido construidas utilizando inteligencia artificial que buscan alrededor del Data Warehouse modelos y relaciones en los datos. Estas herramientas utilizan una técnica conocida como Data Minning o Minería de datos.
¿QUÉ PUEDEN OFRECER LAS BODEGAS DE DATOS ?
El objetivo de las bodegas de datos es centralizar una gran variedad de datos e información, interpretar dicha información y darle un valor agregado para beneficio del negocio todo ello por supuesto, con un fácil acceso y visualización por parte de los usuarios. Algunos procesos que se realizan en estos escenarios son:
Transformación de Datos. Se obtienen datos e información de diferentes fuentes o almacenamientos y se aplica una serie de reglas definidas que convierten los datos en información útil para la toma de decisiones.
Repositorios y metadatos. Más importante aún que el flujo de datos es entender el origen y la descripción de éstos de una forma que sea común para toda la organización. "No se requiere más datos, se requiere entenderlos".
Procesamiento analítico en línea (OLAP). Provee el medio para obtener visualizar y analizar información con alto rendimiento y flexibilidad. OLAP presenta la información a los usuarios de una forma natural e intuitiva. De esta manera los usuarios pueden ser más efectivos en reconocer el valor de dicha información.
Visualización. En la mayoría de los casos los datos pueden ser mejor entendidos si los números son combinados de diferentes formas y presentados visualmente en forma de histogramas y varios tipos de gráficas. La visualización puede ser especialmente útil en identificar rápidamente cuales datos pueden tener un análisis especial.
¿Cómo trabaja una bodega de datos?
Las bodegas de datos son una base de datos históricos y operativos de la compañía(banco,
...