ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Estadistica Inferencial

alexynany19 de Mayo de 2014

3.849 Palabras (16 Páginas)341 Visitas

Página 1 de 16

UNIVERSIDAD POLITÉCNICA ESTATAL DEL CARCHI

FACULTAD DE COMERCIO INTERNACIONAL, INTEGRACIÓN, ADMINISTRACIÓN Y ECONOMIA EMPRESARIAL

Carrera: Escuela de Comercio Exterior y Negociación Internacional

“ESTADISTICA INFERENCIAL”

ING. Jorge Pozo

INTEGRANTE: Jesenia Pozo

CURSO: Sexto “B”

TULCÁN, JULIO 2012

TEMA: Aplicación de los estadísticos en el programa SPSS

PROBLEMA: El escaso conocimiento de la Aplicación de Estadísticos en programas SPSS no ha permitido a los estudiantes resolver problemas

OBJETIVOS

OBJETIVO GENERAL:

Aplicar los estadísticos en el programa SPSS que permita resolver problemas de comercio exterior

OBJETIVO ESPECIFICO:

Investigar la aplicación de los Estadísticos en el programa SPSS para resolver problemas de Comercio Exterior

Conocer la aplicación de los Estadísticos en el programa SPSS

Analizar la aplicación de Estadísticos en el programa SPSS para resolver problemas de Comercio Exterior.

JUSTIFICACION

Con esta investigación se quiere conocer los programas que hoy en la actualidad permiten aplicar problemas y ejercicios que surgen en el comercio exterior, en este caso queremos interpretar los diferentes estadísticos que manejamos dentro de la estadística inferencial, utilizando el programa SPSS 17, el cual permite calcular resultados de una forma más rápida y precisa.

Con la aplicación de los estadísticos en este programa buscamos que la forma para tomar y analizar resultados, sea más factible para la persona que requiere de esta información.

En este proyecto esta detallado cada paso que se deberá tomar al momento de calcular los diferentes estadísticos de manera que sea entendible y practico.

MARCO TEÓRICO

SPSS STADISTIC

SPSS es un programa estadístico informático muy usado en las ciencias sociales y las empresas de investigación de mercado. Originalmente SPSS fue creado como el acrónimo de Statistical Package for the Social Sciences aunque también se ha referido como "Statistical Product and Service Solutions" (Pardo, A., & Ruiz, M.A., 2002, p. 3). Sin embargo, en la actualidad la parte SPSS del nombre completo del software (IBM SPSS) no es acrónimo de nada.

Como programa estadístico es muy popular su uso debido a la capacidad de trabajar con bases de datos de gran tamaño. En la versión 12 es de 2 millones de registros y 250.000 variables. Además, de permitir la recodificación de las variables y registros según las necesidades del usuario. El programa consiste en un módulo base y módulos anexos que se han ido actualizando constantemente con nuevos procedimientos estadísticos. Cada uno de estos módulos se compra por separado.

Actualmente, compite no sólo con software licenciados como lo son SAS, MATLAB, Statistica, Stata, sino también con software de código abierto y libre, de los cuales el más destacado es el Lenguaje R. Recientemente ha sido desarrollado un paquete libre llamado PSPP, con una interfaz llamada PSPPire que ha sido compilada para diversos sistemas operativos como Linux, además de versiones para Windows y OS X. Este último paquete pretende ser un clon de código abierto que emule todas las posibilidades del SPSS.

CORRELACIÓN LINEAL

El análisis de correlación se dirige sobre todo a medir la fuerza de una relación entre variables. El coeficiente de correlación lineal, r, es la medida de la fuerza de la relación lineal entre dos variables. La fortaleza de la relación se determina mediante la magnitud del efecto que cualquier cambio en una variable ejerce sobre la otra. (JOHNSON, 1990)

Si X o Y son las dos variables en cuestión, un diagrama de la dispersión muestra la localización de los puntos (X,Y) sobre un sistema rectangular de coordenadas. Si todos los puntos del diagrama de dispersión parecen estar en una recta, como la figura 14(a) y 14(b) la correlación se llama lineal. (SPIEGEL, 1992)

REGRESIÓN LINEAL

Fases del modelo de regresión lineal

La recta de regresión y el coeficiente de correlación tienen sentido en tanto en cuanto son instrumento para inferir la relación de las variables en la población.

El conocimiento exacto del coeficiente de correlación solo es posible si analizamos la totalidad de la población. Sin embargo, a la hora de evaluarlo, nos encontramos con el problema habitual de tener que inferirlo desde la estimación que proporcionan los datos de una muestra.

La recta de regresión lineal y=a+bx, es una estimación de la recta de regresión lineal de la población y=α+ßx. Los parámetros α y ß son evaluados a partir de los datos de una muestra, y es fundamental tener unas garantías de que los valores a y b estimados no difieren significativamente de los parámetros poblacionales α y ß.

El proceso que se sigue en la construcción del modelo de regresión se compone de tres fases o etapas. En la primera fase, se comprueba si la relación entre las variables que componen el modelo está de acuerdo con la propia forma del modelo.

La segunda fase consiste en la estimación de los parámetros de acuerdo con el criterio elegido (en nuestro caso, el método de mínimos cuadrados).

La última fase es fundamental para el investigador, que debe comprobar si las inferencias o pronósticos que se pueden hacer de la relación encontrada entre las variables se ajustan a los datos. (VARGAS, 1995).

PRUEBA DE HIPÓTESIS

La prueba de hipótesis comienza con una suposición, llamada hipótesis, que hacemos acerca de un parámetro de población. Después recolectamos datos de muestra, producimos estadísticas muéstrales y usamos esta información para decidir qué tan probable es que nuestro parámetro de población hipotético sea correcto. Digamos que suponemos un cierto valor para una medida de población, para probar validez de esa suposición recolectamos datos de muestra y determinamos la diferencia entre el valor hipotético y el valor real de la media de la muestra. Después juzgamos si la diferencia obtenida es significativa o no. Mientras más pequeña sea la diferencia, mayor será la probabilidad de que nuestro valor hipotético para la media sea correcto. Mientras mayor sea la diferencia, más pequeña será la probabilidad. (LEVIN, 2010)

T DE STUDENT

En probabilidad y estadística, la distribución T - Student es una distribución de probabilidad que surge del problema de estimar la media de una población normalmente distribuida cuando el tamaño de la muestra es pequeño.

Una variable aleatoria se distribuye según el modelo de T - Student con n grados de libertad.

Propiedades:

La gráfica de la función de densidad es en forma de campana.

Los datos están más dispersos que la curva normal estándar.

A medida que n aumenta, la gráfica se aproxima a la normal N (0,1).

La gráfica es muy parecida a la de la normal estándar diferenciándose en que las colas de t están por encima de la normal, y el centro se encuentra por debajo del de la normal.

Cuando los grados de libertad son altos, los valores de t coinciden con los de la normal.

CHI- CUADRADO

Es un estadístico que sirve de base para una prueba no paramétrica denominada prueba de chi cuadrado que se utiliza especialmente para variables cualitativas, esto es, variables que carecen de unidad y por lo tanto sus valores no pueden expresarse numéricamente. Los valores de estas variables son categorías que solo sirven para clasificar los elementos del universo del estudio. También puede utilizarse para variables cuantitativas, transformándolas, previamente, en variables cualitativas ordinales.

El estadístico Chi- Cuadrado se define por:

x^2=((n-1)s^2)/σ^2

En donde:

n=número de elementos de la muestra

n-1= números de grados de libertad.

s^2 =varianza de la muestra

σ^2 = varianza de la población

VARIANZA

Cuando es necesario hacer comparaciones entre tres o más medias muéstrales para determinar si provienen de poblaciones iguales utilizamos la técnica de análisis de varianza. Esta técnica se realiza utilizando la distribución de probabilidad F vista anteriormente. Para el uso de esta técnica es necesario seguir los siguientes supuestos:

Las poblaciones siguen una Distribución de Probabilidad Normal

Las poblaciones tienen desviaciones estándar (σ) iguales

Las muestras se seleccionan de modo independiente

La técnica del análisis de varianza descompone la variación total en dos componentes de variación llamados variación debida a los tratamientos y variación aleatoria.

INSTALACIÓN DEL SPSS

PASOS PARA DESCARGAR EINSTALAR EL SPSS

Prender el computador

Descargar el programa spss

Entrar en la pagina 4 shared

Clic en archivos y poner el nombre del programa y buscar

Clic en descargar spss

Clic en descargar archivo esperar algunos segundo

Clic en descargar archivo

Asegurarse de no estar conectado a internet: durante la instalación el programa

Para desconectar el acceso a la red hacer clic en Inicio

Panel de control

Conexiones de red.

Luego hacer clic con el botón secundario del mouse en el ícono de la placa de red y hacer clic en "Desactivar".

) Ir a la carpeta donde se ubica el archivo "SPSS 17 Setup.exe"

...

Descargar como (para miembros actualizados) txt (29 Kb)
Leer 15 páginas más »
Disponible sólo en Clubensayos.com