Estadistica Inferencial
misala7622 de Marzo de 2014
5.621 Palabras (23 Páginas)233 Visitas
1
J. Gabriel Molina y María F. Rodrigo
Estadística descriptiva en Psicología
Curso 2009-2010
T. 10 – La estadística inferencial: algunos conceptos previos.
1. Teoría de la Probabilidad
2. Variables aleatorias
3. Modelos teóricos de distribución de probabilidad
3.1. La distribución binomial
3.2. La distribución o curva normal
4. La selección de la muestra.
• La importancia de la Teoría de la Probabilidad en el ámbito de la estadística se deriva del hecho de constituir ésta uno de los pilares teóricos fundamentales sobre los que se asienta el desarrollo y aplicación de la Estadística Inferencial. Así, mientras que si de una o más variables conocemos sus características (tendencia central, dispersión, asociación...) en la población, la Teoría de la Probabilidad nos permite establecer predicciones de las características que esas variables adoptarán en una muestra de sujetos extraída al azar de esa población, la estadística inferencial -basándose en el conocimiento desarrollado por la Teoría de la Probabilidad en ese camino de la población a la muestra- ha establecido las bases para trazar el camino opuesto, esto es, inferir a partir de los datos de una muestra en una o más variables, cómo serán las características (tendencia central, dispersión, asociación...) de esas variables en la población a la que esa muestra representa. Gráficamente:
2
J. Gabriel Molina y María F. Rodrigo
Estadística descriptiva en Psicología
Curso 2009-2010
POBLACIÓN
Variables aleatorias Parámetros:
,,...XXXμπσ
MUESTRA
Variables estadísticas
Estadísticos: X, pX,
Teoría de la Probabilidad
Estadística
Inferencial
Muestreo
1. Teoría de la Probabilidad
• Ante un evento de resultado incierto, el campo de conocimientos de la Teoría de la Probabilidad ha dirigido sus esfuerzos a determinar el grado en qué puede ocurrir cualquiera de los resultados posibles [sucesos] que se pueden derivar de la realización de tal evento [experimento aleatorio].
Ejemplos de evento incierto: (1) el lanzamiento de una moneda (sucesos posibles: que salga cara y que salga cruz); mi estado de salud durante el próximo mes (sucesos posibles: bueno; malo; regular); la práctica religiosa de un estudiante de la Universidad elegido al azar (sucesos posibles: ninguna; católica; protestante; etc.); el CI de ese mismo estudiante (sucesos posibles: que sea igual a 120; que sea igual a 85... En este último caso, los sucesos se podrían expresar, no en forma de sucesos elementales, sino de sucesos compuestos, por ejemplo: que sea menor de 110; que sea mayor o igual a 110.
• El esfuerzo de la Teoría de la Probabilidad por determinar el grado en qué puede ocurrir uno cualquiera de los sucesos asociado a un determinado experimento aleatorio se ha concretado en la asignación de un valor numérico que refleje el grado en que es previsible la ocurrencia de ese suceso.
3
J. Gabriel Molina y María F. Rodrigo
Estadística descriptiva en Psicología
Curso 2009-2010
A este valor numérico se le conoce como probabilidad (P) y puede, por convención, oscilar entre 0 y 1 (0: probabilidad nula; 1: probabilidad segura). Así, para el suceso i de un experimento aleatorio X: 0()iPX 1 ≤≤
Otra propiedad importante de las probabilidades es que, para los distintos (n) sucesos elementales asociados a un experimento aleatorio, la suma de sus probabilidades será igual a 1: 1()1niiPX==Σ
• A continuación se van a describir 3 enfoques en la estimación de las probabilidades asociadas a los resultados posibles de un evento incierto. Dado que normalmente estos enfoques lo que permiten obtener son estimaciones, no los verdaderos valores de probabilidad, haremos referencia a estos valores estimados con el símbolo P’, mientras que para el verdadero valor de probabilidad se reserva el símbolo P.
(1) Enfoque subjetivo: supone estimar la probabilidad de un suceso en función del grado de confianza personal que se tiene acerca de la ocurrencia del mismo, ya venga esa confianza determinada por nuestra experiencia vital, por nuestras convicciones personales o creencias, o por cualquier otra fuente sobre la que se base el conocimiento que tenemos de nuestro medio. Se trata del procedimiento más utilizado en la práctica desde siempre a la hora de estimar probabilidades, especialmente, cuando no se tienen ciertas nociones sobre otras aproximaciones al cálculo de probabilidades, o bien, cuando aplicar éstas resulta poco operativo. Por ejemplo, cuando me asomo a la ventana antes de salir de casa y veo el cielo, realizo una estimación de la probabilidad de que llueva durante el día. Y como consecuencia de esa estimación, y dependiendo de lo que me importe mojarme, decido qué ponerme o si coger un paraguas. En realidad, hacemos este tipo de estimaciones subjetivas de probabilidad en muchas ocasiones, aunque no siempre de forma muy consciente, constituyendo un elemento determinante de las decisiones que finalmente tomamos.
Ejemplos de estimación subjetiva de probabilidad: (1) a la hora de estimar la probabilidad de que al lanzar dos dados salgan en ambos un seis, muchas personas realizarían una estimación subjetiva de la misma pues, aunque existen otras aproximaciones más precisas a la hora de realizar esa estimación, su aplicación es desconocida para muchos; (2) también las personas suelen realizar estimaciones subjetivas de la probabilidad de que les toque el ‘gordo’ en un
4
J. Gabriel Molina y María F. Rodrigo
Estadística descriptiva en Psicología
Curso 2009-2010
sorteo de lotería -en general, muy al alza- y, curiosamente, suelen ser estimaciones diferentes en función del número considerado; (3) también es habitual realizar estimaciones subjetivas de la probabilidad respecto al resultado de un partido, por ejemplo, de que gane el Valencia CF en su partido del próximo fin de semana.
(2) Enfoque clásico o a priori: consiste en estimar la probabilidad de un suceso (Xi) como la razón entre los resultados favorables a ese suceso y el número total de resultados posibles que se pueden dar en la realización del experimento aleatorio. º()ºinderesultadosfavorablesPXnderesultadosposibles′=
Ejemplo: ¿cuál es la probabilidad de que al lanzar un dado salga un 5? 1(5)0,166iPX′=== 7
Ejercicio 1: ¿cuál es la probabilidad de que al lanzar un dado salga un 3?; ¿y de que salga número par?; ¿y de que al lanzar dos dados, la suma de los puntos dé igual a 7?; ¿y de que en la lotería de Navidad toque el gordo en el número al que juego?
Este enfoque en la estimación de probabilidades asume el conocido como principio de indiferencia, esto es, que la probabilidad de ocurrencia de todos los sucesos es la misma. Si se cumple este supuesto en la realización de un determinado experimento aleatorio, entonces podremos decir que las estimaciones realizadas de acuerdo a esta aproximación serán los verdaderos valores de probabilidad. Sin embargo, el cumplimiento de este principio resulta difícil de aceptar en muchas situaciones en la práctica. Por ejemplo, si aplicamos la aproximación clásica a la hora de estimar la probabilidad de que un estudiante elegido al azar de la Universidad su estado civil sea viudo/a, nos daría igual a ¼, un resultado poco creíble pero que ha venido motivado por realizar la estimación no cumpliéndose en este caso el principio de indiferencia.
En algunos casos sí que se puede asumir el cumplimiento de este principio -por ejemplo, en juegos de azar-, pero en otros muchos casos puede tenerse serias dudas acerca de la satisfacción del mismo, lo cual cuestionaría la aplicación de este enfoque.
5
J. Gabriel Molina y María F. Rodrigo
Estadística descriptiva en Psicología
Curso 2009-2010
(3) Enfoque frecuencialista, a posteriori o estadístico: dado un suceso Xi asociado a la realización de un determinado experimento aleatorio, la estimación de la probabilidad de Xi a partir de este enfoque se basa en la repetición de una gran cantidad de veces del experimento aleatorio en las mismas condiciones, para así obtener la razón entre el nº de veces que ha ocurrido ese suceso (ni) y el nº de repeticiones del experimento (n): ()iinPXn′=
Ejercicio 2: ¿cómo se estimaría la probabilidad, de acuerdo a esta aproximación, de que salga un 3 en el lanzamiento de un dado?, ¿y del resto de sucesos planteados en el ejercicio 1?
De acuerdo al enfoque frecuencialista, cuanto mayor sea el número de repeticiones del experimento aleatorio, más cercano será el valor de probabilidad estimado (P’(Xi)) al verdadero valor de probabilidad P(Xi). En términos matemáticos: ()limiinnPXn→∞=
Ejemplo: Si lanzamos una moneda 10 veces a fin de estimar la probabilidad de que salga cara, la probabilidad estimada podría ser, por ejemplo, P’(cara) = 0,6 si nos salieran 6 caras y 4 cruces en esos 10 lanzamientos. Sin embargo, a medida que aumenta el número de lanzamientos (idealmente, hasta infinito) esta estimación se irá acercando a la probabilidad verdadera. Se supone que ese valor será igual a 0,5, pero no tiene por qué necesariamente ser así ya que la moneda podría tener algún tipo de curvatura o ser más pesada por alguno de los dos lados.
Si nos fijamos en la fórmula de la aproximación frecuencialista, la estimación de la probabilidad de un suceso se corresponde con la fórmula de la frecuencia relativa o proporción (pi) que vimos al construir una distribución de frecuencias: ()iiPXp′=
En
...