ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

PLAN DE ESTUDIO

LOBONERAP10 de Marzo de 2014

2.834 Palabras (12 Páginas)231 Visitas

Página 1 de 12

De aspecto armonioso y extensa aplicación, salvan los más amplios tramos de todo el mundo; el de la Golden Gate, entrada a la bahía de San Francisco (California), tiene 1281 m de longitud. Los principales elementos de estos puentes son sus cables, suspendidos de torres y anclados por sus extremos a los pilares de sujeción. Tales cables, compuestos generalmente por miles de alambres paralelos de acero galvanizado, de 5 mm de diámetro (generalmente), agrupados para formar una sección circular, llevan un arrollamiento en espiral de alambre que mantiene su forma cilíndrica al tiempo que los impermeabiliza. Cada uno de los cuatro cables que sustentan el puente de George Washintong (con un tramo de 1000 m sobre el río Hudson) tiene 76 cm de diámetro y 26000 hilos. Los puentes de tramos relativamente cortos emplean cables de alambre retorcido corriente; también se utilizan cadenas de barra de ojal.

En los puentes colgantes, la estructura resistente básica está formada por los cables principales, que se fijan en los extremos del vano a salvar, y tienen la flecha necesaria para soportar mediante un mecanismo de tracción pura, las cargas que actúan sobre él. El puente colgante más elemental es el puente catenaria, donde los propios cables principales sirven de plataforma de paso.

Paradójicamente, la gran virtud y el gran defecto de los puentes colgantes se deben a una misma cualidad: su ligereza.

La ligereza de los puentes colgantes, los hace más sensibles que ningún otro tipo al aumento de las cargas de tráfico que circulan por él, porque su relación peso propio / carga de tráfico es mínima; es el polo opuesto del puente de piedra.

Actualmente los puentes colgantes se utilizan casi exclusivamente para grandes luces; por ello, salvo raras excepciones, todos tienen tablero metálico.

El puente colgante es, igual que el arco, una estructura que resiste gracias a su forma; en este caso salva una determinada luz mediante un mecanismo resistente que funciona exclusivamente a tracción, evitando gracias a su flexibilidad, que aparezcan flexiones en él.

Figura 2.9

El cable, es un elemento flexible, lo que quiere decir que no tiene rigidez y por tanto no resiste flexiones. Si se le aplica un sistema de fuerzas, tomará la forma necesaria para que en él sólo se produzcan esfuerzos axiales de tracción; si esto dejara de ser posible no resistiría. Por tanto, la forma del cable coincidirá forzosamente con la línea generada por la trayectoria de una de las posibles composiciones del sistema de fuerzas que actúan sobre él. Esta línea es el funicular del sistema de cargas, que se define precisamente como la forma que toma un hilo flexible cuando se aplica sobre él un sistema de fuerzas. La curva del cable de un puente colgante es una combinación de la catenaria, porque el cable principal pesa, y de la parábola, porque también pesa el tablero; sin embargo la diferencia entre ambas curvas es mínima, y por ello en los cálculos generalmente se ha utilizado la parábola de segundo grado.

El cable principal es el elemento básico de la estructura resistente del puente colgante. Su montaje debe salvar el vano entre las dos torres y para ello hay que tenderlo en el vacío. Esta fase es la más complicada de la construcción de los puentes colgantes.

Inicialmente se montan unos cables auxiliares, que son los primeros que deben salvar la luz del puente y llegar de contrapeso a contrapeso. La mayoría de los grandes puentes colgantes están situados sobre zonas navegables, y por ello permite pasar los cables iniciales con un remolcador; pero esto no es siempre posible. Como el sistema de cargas de los puentes es variable porque lo son las cargas de tráfico, los puentes colgantes en su esquema elemental son muy deformables. Este esquema elemental consiste en el cable principal, las péndolas, y un tablero sin rigidez, o lo que es lo mismo, con articulaciones en los puntos de unión con las péndolas. En la mayoría de los puentes colgantes, las péndolas que soportan el tablero son verticales.

El esquema clásico de los puentes colgantes admite pocas variaciones; los grandes se han hecho siempre con un cable principal en cada borde del tablero.

Las torres, han sido siempre los elementos más difíciles de proyectar de los puentes colgantes, porque son los que permiten mayor libertad. Por eso en ellas se han dado toda clase de variantes. En los años 20 fueron adquiriendo ya una forma propia, no heredada, adecuada a su función y a su material; la mayoría tienen dos pilares con sección cajón de alma llena, unidos por riostras horizontales, o cruces de San Andrés. En los últimos puentes colgantes europeos construidos con torres metálicas, se ha utilizado un nuevo sistema de empalme de las chapas que forman los pilares verticales. En vez de utilizar uniones roblonadas o atornilladas mediante solape de chapas, como se hizo en los puentes americanos, las uniones se hacen a tope, rectificando mediante fresado el contacto de los distintos módulos que se van superponiendo, de forma que las compresiones se transmiten directamente de chapa a chapa; la unión entre ellas se hace mediante soldadura parcial de la junta. Así se han hecho las torres del puente Severn en Inglaterra y de los puentes del Bósforo en Estambul.

Las torres no plantean problemas especiales de construcción, salvo la dificultad que supone elevar piezas o materiales a grandes alturas; las metálicas del puente Verrazano Narrows tienen una altura desde el nivel del mar de 210 m, y las de hormigón del puente Humber de 155 m.

Las torres de los puentes metálicos se montan generalmente mediante grúas trepadoras ancladas a ellas, que se van elevando a la vez que van subiendo las torres. Las de los puentes de hormigón se construyen mediante encofrados trepadores, como en el puente de Tancarville, o mediante encofrados deslizantes, como en el puente Humber

El montaje del tablero, se ha hecho en muchos de los grandes puentes colgantes por voladizos sucesivos, avanzando la ménsula desde una péndola a la siguiente, de la que se cuelga; el avance se hace simétricamente desde la torre hacia el centro del vano principal y hacia los extremos. Desde el propio tablero ya construido se van montando piezas más o menos grandes, elevándolas mediante grúas situados sobre él, hasta cerrar el tablero en el centro del vano. Así se construyó el puente George Washington, el Golden Gate y muchos de los puentes modernos japoneses.

Otro sistema de montaje, que se ha utilizado en la mayoría de los últimos grandes puentes, y en todos los de sección en cajón, consiste en dividir el tablero en dovelas de sección completa que se llevan por flotación bajo su posición definitiva, y se elevan a ella desde los cables principales mediante cabrestantes; una vez situadas en su posición definitiva se cuelgan de las péndolas. La secuencia de montaje en este caso es generalmente el inverso del anterior; se empiezan a colgar las dovelas centrales, y se avanza simétricamente hasta llegar a las torres. Así se construyó el puente doble de la Bahía de San Francisco, el Bay Bridge, terminado en 1936; el puente Verrazano Narrows en Nueva York; y los modernos: puente sobre el río Severn en Inglaterra, los puentes sobre el Bosforo en Estambul, y el puente sobre el estuario del Humber en Inglaterra.

b. Atirantados.

Armaduras de refuerzo y cables arriostrados (atirantados) o reforzados ayudan a soportar la flexión local creada por las grandes cargas que atraviesan el puente. Las torres se construyen de secciones metálicas formadas a veces por gruesas planchas que les confieren apariencia de gran solidez. Las más antiguas, como las del puente de Brooklyn, son de sillería.

Para distinguir los dos tipos de puentes colgantes que podemos ver, llamaremos suspendido a aquel cuyos cables, normalmente dos, van de extremo a extremo del puente (ej. el Golden Gate) y atirantados (arriostrados) aquellos en los cuáles los cables, partiendo de las torres, sujetan el tablero formando triángulos (isósceles) con el tablero. La altura de dicho triángulo sería parte de la torre. Hay casos en que la torre tiene una posición inclinada como el puente del Alamillo de Sevilla y los cables forman triángulos escalenos con el tablero y parte de la torre.

Los elementos fundamentales de la estructura resistente del puente atirantado son los tirantes, que son cables rectos que atirantan el tablero, proporcionándoles una serie de apoyos intermedios más o menos rígidos.

Pero no sólo ellos forman la estructura resistente básica del puente atirantado;

...

Descargar como (para miembros actualizados) txt (17 Kb)
Leer 11 páginas más »
Disponible sólo en Clubensayos.com