ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Tecnología Láser


Enviado por   •  26 de Octubre de 2014  •  1.815 Palabras (8 Páginas)  •  200 Visitas

Página 1 de 8

Tecnología Láser

Introducción:

Un láser es un dispositivo que utiliza un efecto de la mecánica cuántica, la emisión inducida o estimulada, para generar un haz de luz coherente tanto espacial como temporalmente. La coherencia espacial se corresponde con la capacidad de un haz para permanecer con un pequeño tamaño al transmitirse por el vacío en largas distancias y la coherencia temporal se relaciona con la capacidad para concentrar la emisión en un rango espectral muy estrecho.

Elementos básicos de un láser:

Un láser típico consta de tres elementos básicos de operación. Una cavidad óptica resonante, en la que la luz puede circular, que consta habitualmente de un par de espejos de los cuales uno es de alta reflectancia (cercana al 100%) y otro conocido como acoplador, que tiene una reflectancia menor y que permite la salida de la radiación laser de la cavidad. Dentro de esta cavidad resonante se sitúa un medio activo con ganancia óptica, que puede ser sólido, líquido o gaseoso (habitualmente el gas se encontrará en estado de plasma parcialmente ionizado) que es el encargado de amplificar la luz. Para poder amplificar la luz, este medio activo necesita un cierto aporte de energía, llamada comúnmente bombeo. Este bombeo es generalmente un haz de luz (bombeo óptico) o una corriente eléctrica (bombeo eléctrico)

1. Cavidad laser:

La cavidad óptica resonante conocida también como cavidad láser existe en la gran mayoría de los dispositivos láser y sirve para mantener la luz circulando a través del medio activo el mayor número de veces posible. Generalmente está compuesta de dos espejos dieléctricos que permiten reflectividades controladas que pueden ser muy altas para determinadas longitudes de onda. El espejo de alta reflectividad refleja cerca del 100% de la luz que recibe y el espejo acoplador o de salida, un porcentaje ligeramente menor. Estos espejos pueden ser planos o con determinada curvatura, que cambia su régimen de estabilidad. Según el tipo de láser, estos espejos se pueden construir en soportes de vidrio o cristales independientes o en el caso de algunos láseres de estado sólido pueden construirse directamente en las caras del medio activo, disminuyendo las necesidades de alineación posterior y las pérdidas por reflexión en las caras del medio activo.

Algunos láseres de excímero o la mayoría de los láser de nitrógeno, no utilizan una cavidad propiamente dicha, en lugar de ello un sólo espejo reflector se utiliza para dirigir la luz hacia la apertura de salida. Otros láseres como los construidos en micro cavidades ópticas7 emplean fenómenos como la reflexión total interna para confinar la luz sin utilizar espejos.

2. Medio Activo:

El medio activo es el medio material donde se produce la amplificación óptica. Puede ser de muy diversos materiales y es el que determina en mayor medida las propiedades de la luz láser, longitud de onda, emisión continua o pulsada, potencia, etc. El medio activo es donde ocurren los procesos de excitación (electrónica o de estados vibraciones) mediante bombeo de energía, emisión espontánea y emisión estimulada de radiación. Para que se dé la condición láser, es necesario que la ganancia óptica del medio activo sea inferior a las pérdidas de la cavidad más las pérdidas del medio. Dado que la ganancia óptica es el factor limitante en la eficiencia del láser, se tiende a buscar medios materiales que la maximicen, minimizando las pérdidas, es por esto que si bien casi cualquier material puede utilizarse como medio activo, sólo algunas decenas de materiales son utilizados eficientemente para producir láseres. Con mucha diferencia, los láseres más abundantes en el mundo son los de semiconductor. Pero también son muy comunes los láseres de estado sólido y en menos medida los de gas. Otros medios son utilizados principalmente en investigación o en aplicaciones industriales o médicas muy concretas.

3. Bombeo:

Para que el medio activo pueda amplificar la radiación, es necesario excitar sus niveles electrónicos o vibracionales de alguna manera. Comúnmente un haz de luz (bombeo óptico) de una lámpara de descarga u otro láser o una corriente eléctrica (bombeo eléctrico) son empleados para alimentar al medio activo con la energía necesaria. El bombeo óptico se utiliza habitualmente en láseres de estado sólido (cristales y vidrios) y láseres de colorante (líquidos y algunos polímeros) y el bombeo eléctrico es el preferido en láseres de semiconductor y de gas. En algunas raras ocasiones se utilizan otros esquemas de bombeo que le dan su nombre, por ejemplo a los láseres químicos o láseres de bombeo nuclear que utilizan la energía de la fisión nuclear. Debido a las múltiples pérdidas de energía en todos los procesos involucrados, la potencia de bombeo siempre es menor a la potencia de emisión láser.

Mecanismos de la acción laser:

Si bien, existen varios mecanismos que producen emisión láser, se describe el ejemplo sencillo de un láser de cuatro niveles con bombeo óptico continuo, como puede ser el láser de neodimio.

Absorción de bombeo Transiciones no radiactivas:

En el estado inicial, la mayoría de los electrones se encuentran en el estado fundamental y son excitados mediante un haz de luz de bombeo que contiene energía en las bandas de absorción del neodimio. Los electrones excitados en varios niveles se des excitan rápidamente de forma no radiactiva hacia un nivel meta estable, que en el caso del neodimio es el 4F3/2 donde permanece un tiempo relativamente largo, decayendo lentamente al nivel fundamental y al nivel 4I11/2. Si se cumplen ciertas condiciones en el material y la potencia de bombeo, es posible que se produzca la inversión de población, esto es, que existan más átomos excitados en el nivel 4F3/2 que los que están en el nivel inferior 4I11/2.

...

Descargar como (para miembros actualizados)  txt (11.4 Kb)  
Leer 7 páginas más »
Disponible sólo en Clubensayos.com