APRENDER (POR MEDIO DE) LA RESOLUCIÓN DEPROBLEMAS
arcangeluz23 de Mayo de 2014
2.691 Palabras (11 Páginas)486 Visitas
APRENDER (POR MEDIO DE) LA RESOLUCIÓN DEPROBLEMAS
¿Lecciones de la historia?
Las matemáticas se han construido como respuesta a preguntas que han sido traducidas en otros tantos problemas. Estas preguntas han variado en sus orígenes y en sus contextos: problemas de orden doméstico (división de tierras, cálculo de créditos...); problemas planteados en estrecha vinculación con otras ciencias (astronomía, física...); especulaciones en apariencia “gratuitas” sobre “objetos” pertenecientes a las matemáticas mismas, necesidad de organizar elementos ya existentes, de estructurarlos, por ejemplo, por las exigencias de la exposición (enseñanza...), etcétera. De más está decir que la actividad de resolución de problemas ha estado en el corazón mismo de la elaboración de la ciencia matemática. “¡Hacer matemática es resolver problemas!”, no temen afirmar algunos. Pero esta elaboración no se realiza sin dificultad. Los problemas a menudo ofrecen resistencia; las soluciones son casi siempre parciales, aun si destellos geniales provocan avances espectaculares... que a veces no son reconocidos desde el principio.
¿Pueden estas consideraciones (muy esquemáticas) sobre el origen del conocimiento matemático y sobre las condiciones de su elaboración encontrar eco en una reflexión sobre la cuestión del aprendizaje matemático en el contexto escolar? La respuesta debe ser prudente y cuidadosa: las herramientas o nociones elaboradas en una época determinada lo han sido, en efecto, en un contexto cultural, socioeconómico...., que no es aquel en el que viven nuestros alumnos. Resta decir que son los problemas que les han dado origen (y los que ha planteado a continuación) los que han dado sentido a las matemáticas producidas. Esta es, tal vez, la principal lección que tener en cuenta en la enseñanza.
Construir el sentido...
Uno de los objetivos esenciales (y al mismo tiempo una de las dificultades principales) de la enseñanza de la matemática es precisamente que lo que se ha enseñado esté cargado de significado, tenga sentido para el alumno. Para G. Brousseau (1983),
El sentido de un conocimiento matemático se define:
– no sólo por la colección de situaciones donde este conocimiento es realizado como teoría matemática; no sólo por la colección de situaciones donde el sujeto lo ha encontrado como medio de solución,
– sino también por el conjunto de concepciones que rechaza, de errores que evita, de economías que procura, de formulaciones que retoma, etc.
Agreguemos que la construcción de la significación de un conocimiento debe ser considerada en dos niveles:
• un nivel “externo”: ¿cuál es el campo de utilización de este conocimiento y cuáles son los límites de este campo?
• un nivel “interno”: ¿cómo y por qué funciona tal herramienta? (por ejemplo, ¿cómo funciona un algoritmo y por qué conduce al resultado buscado?).
La cuestión esencial de la enseñanza de la matemática es entonces: ¿cómo hacer para que los conocimientos enseñados tengan sentido para el alumno?
El alumno debe ser capaz no sólo de repetir o rehacer, sino también de replantear en situaciones nuevas, de adaptar, de transferir sus conocimientos para resolver nuevos problemas.
Y es, en principio, haciendo aparecer las nociones matemáticas como herramientas para resolver problemas como se permitirá a los alumnos construir el sentido. Sólo después estas herramientas podrán ser estudiadas por sí mismas.
Estrategia de aprendizaje.
Se plantea entonces al docente la elección de una estrategia de aprendizaje. Esta elección (que cada uno hace al menos implícitamente) está influida por numerosas variables: el punto de vista del docente sobre la disciplina enseñada (¿qué es la matemática?, ¿qué es hacer matemática?), su punto de vista sobre los objetivos generales de la enseñanza y sobre aquellos específicos de la matemática, su punto de vista sobre los alumnos (sus posibilidades, sus expectativas), la imagen que el docente se hace de las demandas de la institución (explícitas, implícitas o supuestas), de la demanda social o también de la de los padres...
Para describir algunos modelos de aprendizaje, se puede apoyar en la idea de “contrato didáctico”, tal como Brousseau lo ha definido:
Conjunto de comportamientos (específicos) del maestro que son esperados por el alumno, y conjunto de comportamientos del alumno que son esperados por el maestro, y que regulan el funcionamiento de la clase y las relaciones maestro-alumnos-saber, definiendo así los roles de cada uno y la repartición de las tareas: ¿quién puede hacer qué?, ¿quién debe hacer qué?, ¿cuáles son los fines y los objetivos?...
Así, una situación de enseñanza puede ser observada a través de las relaciones que se “juegan” entre estos tres polos: maestro, alumno, saber:
Analizando:
– la distribución de los roles de cada uno
– el proyecto de cada uno
– las reglas del juego: ¿qué está permitido, qué es lo que realmente se demanda, qué se espera, qué hay que hacer o decir para “mostrar que se sabe”....? Muy esquemáticamente se describirán tres modelos de referencia:
1. El modelo llamado “normativo” (centrado en el contenido)
Se trata de aportar, de comunicar un saber a los alumnos. La pedagogía es entonces el arte de comunicar, de “hacer pasar” un saber.
– El maestro muestra las nociones, las introduce, provee los ejemplos.
– El alumno, en primer lugar, aprende, escucha, debe estar atento; luego imita, se entrena, se ejercita, y al final aplica.
– El saber ya está acabado, ya construido.
Se reconocen allí los métodos a veces llamados dogmáticos (de la regla a las aplicaciones) o muy eúticos (preguntas/respuestas).
2. El modelo llamado “incitativo” (centrado en el alumno)
Al principio se le pregunta al alumno sobre sus intereses, sus motivaciones, sus propias necesidades, su entorno.
– El maestro escucha al alumno, suscita su curiosidad, le ayuda a utilizar fuentes de información, responde a sus demandas, lo remite a herramientas de aprendizaje (fichas), busca una mejor motivación (medio: cálculo vivo de Freinet, centros de interés de Decroly).
– El alumno busca, organiza, luego estudia, aprende (a menudo de manera próxima a lo que es la enseñanza programada).
– El saber está ligado a las necesidades de la vida, del entorno (la estructura propia de este saber pasa a un segundo plano).
Se reconocen allí las diferentes corrientes llamadas “métodos activos”.
3. El modelo llamado “aproximativo” (centrado en la construcción del saber por el alumno)
Se propone partir de “modelos”, de concepciones existentes en el alumno y “ponerlas a prueba” para mejorarlas, modificarlas o construir nuevas.
– El maestro propone y organiza una serie de situaciones con distintos obstáculos (variables didácticas dentro de estas situaciones), organiza las diferentes fases (investigación, formulación, validación, institucionalización).
– Organiza la comunicación de la clase, propone en el momento adecuado los elementos convencionales del saber (notaciones, terminología).
– El alumno ensaya, busca, propone soluciones, las confronta con las de sus compañeros, las defiende o las discute.
– El saber es considerado con su lógica propia.
Para esto, proponemos un esquema, inspirado en un artículo de R. Champagnol (Revue Française de Pédagogie) que resume las diversas posiciones respecto a la utilización de la resolución de problemas en relación con los tres modelos de aprendizaje descritos anteriormente.
1) El problema como criterio del aprendizaje (modelo llamado “normativo”)
Mecanismos -Lecciones (adquisición)
-Ejercicios (ejercitación)
Sentidos -Problemas (utilización de los conocimientos para el alumno, control -para el maestro)
-Lo que conduce a menudo a estudiar tipos de problemas: confrontado a un nuevo problema, el alumno busca si ya ha resuelto uno del mismo tipo.
-Es el modelo de referencia de numerosos manuales, siendo la idea subyacente que es necesario partir de lo fácil, de lo simple, para acceder a lo complejo, y que un conocimiento complejo puede ser, para el aprendizaje, descompuesto en una serie de conocimientos fáciles de asimilar y que, finalmente, todo aprendizaje debe ir de lo concreto a lo abstracto.
2) El problema como móvil del aprendizaje (modelo llamado “incitativo”)
Motivación -Situación basada en lo vivido
Mecanismo -Aporte de conocimientos
-Práctica, ejercicios
Restructuración -problemas
-Al principio, se desea que el alumno sea un “demandante activo, ávido de conocimientos funcionalmente útiles
-Pero
...