ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Distribucion De F De Fisher


Enviado por   •  2 de Junio de 2015  •  1.845 Palabras (8 Páginas)  •  2.210 Visitas

Página 1 de 8

Unidad 4 Estadística Inferencial

Distribución F de Fisher

A diferencia de otras pruebas de medias que se basan en la diferencia existente entre dos valores, el análisis de varianza emplea la razón de las estimaciones, dividiendo la estimación intermediante entre la estimación interna

Esta razón F fue creada por Ronald Fisher (1890-1962), matemático británico, cuyas teorías estadísticas hicieron mucho más precisos los experimentos científicos. Sus proyectos estadísticos, primero utilizados en biología, rápidamente cobraron importancia y fueron aplicados a la experimentación agrícola, médica e industrial. Fisher también contribuyó a clarificar las funciones que desempeñan la mutación y la selección natural en la genética, particularmente en la población humana.

El valor estadístico de prueba resultante se debe comparar con un valor tabular de F, que indicará el valor máximo del valor estadístico de prueba que ocurría si H0 fuera verdadera, a un nivel de significación seleccionado. Antes de proceder a efectuar este cálculo, se debe considerar las características de la distribución F

Características de la distribución F

- Existe una distribución F diferente para cada combinación de tamaño de muestra y número de muestras. Por tanto, existe una distribución F que se aplica cuando se toman cinco muestras de seis observaciones cada una, al igual que una distribución F diferente para cinco muestras de siete observaciones cada una. A propósito de esto, el número distribuciones de muestreo diferentes es tan grande que sería poco práctico hacer una extensa tabulación de distribuciones. Por tanto, como se hizo en el caso de la distribución t, solamente se tabulan los valores que más comúnmente se utilizan. En el caso de la distribución F, los valores críticos para los niveles 0,05 y 0,01 generalmente se proporcionan para determinadas combinaciones de tamaños de muestra y número de muestras.

La razón más pequeña es 0. La razón no puede ser negativa, ya que ambos términos de la razón F están elevados al cuadrado.

Por otra parte, grandes diferencias entre los valores medios de la muestra, acompañadas de pequeñas variancias muestrales pueden dar como resultado valores extremadamente grandes de la razón F.

- La forma de cada distribución de muestreo teórico F depende del número de grados de libertad que estén asociados a ella. Tanto el numerador como el denominador tienen grados de libertad relacionados.

La necesidad de disponer de métodos estadísticos para comparar las varianzas de dos poblaciones es evidente a partir del análisis de una sola población. Frecuentemente se desea comparar la precisión de un instrumento de medición con la de otro, la estabilidad de un proceso de manufactura con la de otro o hasta la forma en que varía el procedimiento para calificar de un profesor universitario con la de otro.

Intuitivamente, podríamos comparar las varianzas de dos poblaciones, y , utilizando la razón de las varianzas muéstrales s21/s22. Si s21/s22 es casi igual a 1, se tendrá poca evidencia para indicar que y no son iguales. Por otra parte, un valor muy grande o muy pequeño para s21/s22, proporcionará evidencia de una diferencia en las varianzas de las poblaciones.

La variable aleatoria F se define como el cociente de dos variables aleatorias ji-cuadrada independientes, cada una dividida entre sus respectivos grados de libertad. Esto es,

donde U y V son variables aleatorias ji-cuadrada independientes con grados de libertad y  respectivamente.

Sean U y V dos variables aleatorias independientes que tienen distribución ji cuadradas con grados de libertad, respectivamente. Entonces la distribución de la variable aleatoria está dada por:

y se dice que sigue la distribución F con grados de libertad en el numerador y grados de libertad en el denominador.

La media y la varianza de la distribución F son:

para

para

La variable aleatoria F es no negativa, y la distribución tiene un sesgo hacia la derecha. La distribución F tiene una apariencia muy similar a la distribución ji-cuadrada; sin embargo, se encuentra centrada respecto a 1, y los dos parámetros proporcionan una flexibilidad adicional con respecto a la forma de la distribución.

Si s12 y s22 son las varianzas muestrales independientes de tamaño n1 y n2 tomadas de poblaciones normales con varianzas  y , respectivamente, entonces:

Para manejar las tablas de Fisher del libro de Introducción a la Inferencia Estadística del autor Güenther, se tendrá que buscar primero los grados de libertad dos para luego localizar el área correspondiente, relacionándola con los grados de libertad uno, para calcular el valor de F.

Las tablas tienen la siguiente estructura:

P 1 2 3 ……. ….. 500 …

6 0.0005

0.001

0.005

.

.

0.9995 30.4

El valor de 30.4 es el correspondiente a una Fisher que tiene 3 grados de libertad uno y 6 grados de libertad dos con un área de cero a Fisher de 0.995. Si lo vemos graficamente:

Como nos podemos imaginar existen varias curvas Fisher, ya que ahora su forma depende de dos variables que son los grados de libertad.

Ejemplos :

1. Encontrar el valor de F, en cada uno de los siguientes casos:

a. El área a la derecha de F, es de 0.25 con =4 y =9.

b. El área a la izquierda de F, es de 0.95 con =15 y =10

c. Como el área que da la tabla es de cero a Fisher, se tiene que localizar primero los grados de libertad dos que son 9, luego un área de 0.75 con 4 grados de libertad uno.

d. El área a

...

Descargar como (para miembros actualizados)  txt (11 Kb)  
Leer 7 páginas más »
Disponible sólo en Clubensayos.com