ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Distribucion De Poisson

VictorMtz12 de Marzo de 2014

612 Palabras (3 Páginas)237 Visitas

Página 1 de 3

Distribución de Poisson

En teoría de probabilidad y estadística, la distribución de Poisson es una distribución de probabilidad discreta que expresa, a partir de una frecuencia de ocurrencia media, la probabilidad que ocurra un determinado número de eventos durante cierto periodo de tiempo.

La función de masa de la distribución de Poisson es

Donde:

• k es el número de ocurrencias del evento o fenómeno (la función nos da la probabilidad de que el evento suceda precisamente k veces).

• λ es un parámetro positivo que representa el número de veces que se espera que ocurra el fenómeno durante un intervalo dado. Por ejemplo, si el suceso estudiado tiene lugar en promedio 4 veces por minuto y estamos interesados en la probabilidad de que ocurra k veces dentro de un intervalo de 10 minutos, usaremos un modelo de distribución de Poisson con λ = 10×4 = 40.

• e es la base de los logaritmos naturales (e = 2,71828...)

Tanto el valor esperado como la varianza de una variable aleatoria con distribución de Poisson son iguales a λ. Losmomentos de orden superior son polinomios de Touchard en λ cuyos coeficientes tienen una interpretacióncombinatorio. De hecho, cuando el valor esperado de la distribución de Poisson es 1, entonces según la fórmula de Dobinski, el n-ésimo momento iguala al número de particiones de tamaño n.

La moda de una variable aleatoria de distribución de Poisson con un λ no entero es igual a , el mayor de los enteros menores que λ (los símbolos representan la función parte entera). Cuando λ es un entero positivo, las modas son λ y λ − 1.

La función generadora de momentos de la distribución de Poisson con valor esperado λ es

Las variables aleatorias de Poisson tienen la propiedad de ser infinitamente divisibles.

La divergencia Kullback-Leibler desde una variable aleatoria de Poisson de parámetro λ0 a otra de parámetro λ es

Un criterio fácil y rápido para calcular un intervalo de confianza aproximada de λ es propuesto por Guerriero (2012).1Dada una serie de eventos k (al menos el 15 - 20) en un periodo de tiempo T, los límites del intervalo de confianza para la frecuencia vienen dadas por:

entonces los límites del parámetro están dadas por:

Sumas de variables aleatorias de Poisson

La suma de variables aleatorias de Poisson independientes es otra variable aleatoria de Poisson cuyo parámetro es la suma de los parámetros de las originales. Dicho de otra manera, si

son N variables aleatorias de Poisson independientes, entonces

.

Distribución binomial

La distribución de Poisson es el caso límite de la distribución binomial. De hecho, si los parámetros n y de una distribución binomial tienden a infinito y a cero de manera que se mantenga constante, la distribución límite obtenida es de Poisson.

Aproximación normal

Como consecuencia del teorema central del límite, para valores grandes de , una variable aleatoria de Poisson X puede aproximarse por otra normal dado que el cociente

converge a una distribución normal de media nula y varianza 1.

Distribución exponencial

Supóngase que para cada valor t > 0, que representa el tiempo, el número de sucesos de cierto fenómeno aleatorio sigue una distribución de Poisson de parámetro λt. Entonces, los tiempos discurridos entre dos sucesos sucesivos sigue la distribución exponencial.

Distribución de Poisson

El eje horizontal es el índice k. La función solamente está definida en valores enteros de k. Las líneas que conectan los puntos son solo guías para el ojo y no indican continuidad.

Función de probabilidad

El eje

...

Descargar como (para miembros actualizados) txt (4 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com