ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Estadistica Aplicada

28 de Febrero de 2015

781 Palabras (4 Páginas)178 Visitas

Página 1 de 4

COEFICIENTE DE CORRELACIÓN

Para poder contar con un indicador que nos permita, por un lado establecer la covariación conjunta de dos variables , y por otro, que tenga la universalidad suficiente para poder establecer comparaciones entre distintos casos, se utiliza el coeficiente de correlación (lineal, de Pearson).La correlación es, pues una medida de covariación conjunta que nos informa del sentido de esta y de su relevancia, que está acotada y permite la comparación entre distintos casos.

El coeficiente de correlación entre dos variables puede definirse como la covarianza existente entre sus dos variables tipificadas y tiene por expresión de cálculo:

Interpretación:

**Si r < 0 Hay correlación negativa : las dos variables se correlacionan en sentido inverso.A valores altos de una de ellas le suelen corresponder valor bajos de la otra y viceversa.Cuánto más próximo a -1 esté el coeficiente de correlación más patente será esta covariación extrema.Si r= -1 hablaremos de correlación negativa perfecta lo que supone una determinación absoluta entre las dos variables ( en sentido inverso): Existe una relación funcional perfecta entre ambas(una relación lineal de pendiente negativa).

** Si r > 0 Hay correlación positiva: las dos variables se correlacionan en sentido directo.A valores altos de una le corresponden valores altos de la otra e igualmente con los valores bajos.Cuánto más próximo a +1 esté el coeficiente de correlación más patente será esta covariación.Si r = 1 hablaremos de correlación positiva perfecta lo que supone una determinación absoluta entre las dos variables (en sentido directo):Existe una relación lineal perfecta ( con pendiente positiva).

** Si r = 0 se dice que las variables están incorrelacionadas: no puede establecerse ningún sentido de covariación.

Coeficiente de correlación lineal

En una distribución bidimensional puede ocurrir que las dos variables guarden algún tipo de relación entre si.

Por ejemplo, si se analiza la estatura y el peso de los alumnos de una clase es muy posible que exista relación entre ambas variables: mientras más alto sea el alumno, mayor será su peso.

El coeficiente de correlación lineal mide el grado de intensidad de esta posible relación entre las variables. Este coeficiente se aplica cuando la relación que puede existir entre las varables es lineal (es decir, si representaramos en un gáfico los pares de valores de las dos variables la nube de puntos se aproximaría a una recta).

No obstante, puede que exista una relación que no sea lineal, sino exponencial, parabólica, etc. En estos casos, el coeficiente de correlación lineal mediría mal la intensidad de la relación las variables, por lo que convendría utilizar otro tipo de coeficiente más apropiado.

Para ver, por tanto, si se puede utilizar el coeficiente de correlación lineal, lo mejor es representar los pares de valores en un gráfico y ver que forma describen.

El coeficiente de correlación lineal se calcula aplicando la siguiente fórmula:

Es decir:

Numerador: se denomina covarianza y se calcula de la siguiente manera: en cada par de valores (x,y) se multiplica la "x" menos su media, por la "y" menos su media. Se suma el resultado obtenido de todos los pares de valores y este resultado se divide por el tamaño de la muestra.

Denominador se calcula el produto de las varianzas de "x" y de "y", y a este produto se le calcula la raíz cuadrada.

Los valores que puede tomar el coeficiente de correlación "r" son: -1 < r < 1

Si "r" > 0, la correlación lineal es positiva (si sube el valor de una variable sube el de la otra). La correlación es tanto más fuerte cuanto más se aproxime a 1.

Por ejemplo:

...

Descargar como (para miembros actualizados) txt (5 Kb)
Leer 3 páginas más »
Disponible sólo en Clubensayos.com