Estructura De Transicion
pozoperera20 de Marzo de 2013
4.627 Palabras (19 Páginas)481 Visitas
Estructuras de transición
Consideraciones generales
Un trabajo que frecuentemente deben realizar los ingenieros civiles, consiste en el diseño de una transición entre dos canales de diferente sección transversal, o entre un canal y una galería o un sifón. Como criterios para el dimensionamiento hidráulico se pueden mencionar:
a. Minimización de las pérdidas de energía por medio de estructuras económicamente justificables.
b. Eliminación de las ondulaciones grandes y de los vórtices (por ejemplo, los vórtices de entrada con el consecuente peligro de introducción de aire.
c. Eliminación de zonas con agua tranquila o flujo muy retardado (por ejemplo: las zonas de separación traen consigo e! riesgo de depósito de material en suspensión).
Estos criterios se cumplen para el caso de flujo subcrítico, si se le confiere a la estructura de transición una forma hidrodinámica con la ayuda de relaciones derivadas del fenómeno de la formación de ondas. El problema de la formación de ondas no se restringe a las estructuras con flujo supercrítico. También en flujo sub-crítico se forman ondas permanentes si hay cambios bruscos de dirección o cambios fuertes de nivel del fondo del canal. En este último caso puede llegar a presentarse un cambio de régimen con salto hidráulico, si no se pone atención en el diseño de la estructura (Chow, 1959, pág. 314).
Consideraciones
¿Hasta qué punto se puede ajustar la forma de la estructura en la zona de transición a una forma hidrodinámica, considerando también los puntos de vista económicos? Esto depende mucho del tamaño y de la función de la estructura. Con el objetivo de lograr formas económicas, en particular para estructuras pequeñas, se realizaron investigaciones exhaustivas en el U.S. Department of Agriculture (Scobey, 1933). También el U.S. Bureau of Reclamatíon (1952) ha elaborado recomendaciones con el fin de conseguir, en lo posible, formas simples. La publicación de Vittal, Chiranjeevi (1983) es una de las más recientes acerca de criterios de diseño para estructuras de transición.
Para los cálculos hidráulicos en las estructuras de transición con flujo subcrítico son admisibles las siguientes hipótesis:
• Se supone que la pendiente de la línea de energía es constante en el tramo relativamente corto de la estructura de transición y, en ausencia de pérdidas locales, puede, asimismo, calcularse por tramos con la ayuda de la ecuación de Gauckler-Manning-Strickler:
• La velocidad varía principalmente en función de la distancia. Se supone que los factores a y 13 son iguales a 1, o bien, pueden definirse para las secciones transversales extremas y efectuar una interpolación para las secciones intermedias.
Los efectos de la curvatura del flujo pueden ignorarse, con lo que las distribuciones de presión resultan hidrostáticas. Se pueden dejar de considerar también las zonas de separación de flujo.
Pasos para el diseño de una estructura de transición.
Una ayuda valiosa en el cálculo hidráulico es el diagrama de energía con las curvas Ho-y. Se recomienda trazar, con el caudal dado Q, una familia de curvas para varias secciones transversales de la estructura, donde los cambios en la sección transversal de la estructura de transición están limitados únicamente a cambios en el ancho B del canal, de tal modo que las secciones transversales consecutivas están caracterizadas por valores definidos del caudal unitario q=Q/B.
Ilustración 1. Curvas Ho - y
Se supone que se conocen las secciones transversales de los canales aguas arriba y aguas abajo, los cuales deben ser unidas con la estructura de transición y también, el caudal, la profundidad de agua, la altura de energía en la sección transversal final y su forma. Para la solución de este problema tipico se procede determinando la ubicación de la línea de energía en forma aproximada (hipótesis a), mencionada anteriormente, con lo que queda determinada también la profundidad de agua en la sección transversal inicial. Las dimensiones de las secciones transversales intermedias elegidas para la estructura pueden entonces determinarse de dos maneras:
1. Se selecciona un recorrido uniforme para la superficie libre del agua entre la sección transversal inicial y final, con lo que las cargas de velocidad intermedias quedan fijas, es decir, para cada sección transversal, se fija un determinado punto (y, HJ. Si se dibujan los valores así definidos para Ha a lo largo del eje central de la estructura de transición, se obtiene la ubicación del fondo del canal que correspondería al recorrido seleccionado de la superficie libre del agua.
2. Se selecciona un recorrido continuo y uniforme para el fondo del canal entre los puntos extremos de la estructura de transición. De este modo se fijan los valores de Ha para cada sección transversal intermedia y entonces, con ayuda de la ilustración 1, se puede definir la profundidad de agua "y" correspondiente.
Es probable que luego del primer cálculo no se obtenga el perfil del fondo del canal, con el primer método, o el perfil de la superficie libre del agua, con el segundo método, tan uniforme y continuo como sería deseable. Será necesario, entonces, repetir el procedimiento de cálculo según un ajuste iterativo apropiado hasta obtener una transición uniforme de la superficie libre del agua y del fondo del canal, o bien, modificar la separación entre las secciones transversales para las formas seleccionadas previamente o variar la forma misma de las secciones transversales.
Estrechamientos en canales y estructuras de ingreso
Las diferentes posibilidades de diseño para estrechamientos en canales pueden explicarse, con ayuda de la ilustración 1, en el caso de un canal de sección rectangular. La reducción de la sección transversal puede efectuarse básicamente en dos formas: mediante una reducción de la profundidad y de agua, o por medio de una reducción del ancho B del canal. Se supone que el punto M en la ilustración 1 representa las relaciones geométricas e hidráulicas existentes en el extremo aguas arriba del canal. El paso hacia las relaciones del extremo de aguas abajo, representadas por el punto E, se puede obtener como se explica a continuación:
• El fondo del canal en la estructura de transición se prolonga con igual pendiente (de modo que la energía específica Ha permanece aproximadamente constante), y se reduce el ancho B. En este caso, se pueden leer en la ilustración 1, los cambios de profundidad correspondientes a partir de los puntos de intersección de la línea vertical que pasa por M con las curvas correspondientes a los valores crecientes de Q/B. Luego de que se alcanza un ancho determinado en el punto N, se puede lograr otra disminución de la sección transversal por medio de una sobre-elevación gradual del fondo, manteniendo constante el ancho del canal. La diferencia de altura en el fondo se obtiene a partir del valor de Ha definido en la ilustración 1 luego de la correspondiente corrección por pérdida de energía; la ubicación de la superficie libre del agua se obtiene con la ayuda de las profundidades calculadas con la línea NE. Por lo general, para un estrechamiento dado de la sección transversal a lo largo de MNE, resultan variaciones menores de la profundidad que a lo largo de la línea MGE.
Por supuesto que pueden obtenerse los cambios en el ancho del canal y en el fondo, con una combinación arbitraria cualquiera, como, por ejemplo, mediante la línea de trazos desde M hasta E que se indica en la ilustración 1. En general, se recomienda conformar la contracción de los lados del canal por medio de paredes laterales curvas en zonas de profundidades grandes de agua. Por esto, un diseño según la línea MNE, conducirá a una estructura de menor longitud, y con menores efectos de curvatura que un diseño según MGE. Siempre y cuando los puntos M y E permanezcan claramente en la zona de flujo subcrítico (con números de Froude menores que 0.5), no aparecerán complicaciones para el diseño de la estructura. En la medida en que E se acerque a la profundidad crítica yc, la curva de la superficie libre del agua dentro de la estructura de transición tendrá una pendiente mayor, y mayor será la tendencia a la formación de ondas permanentes.
Este último caso se analiza a continuación por medio de la ilustración 1. Con una contracción creciente del ancho del canal, el punto N se desplaza hacia abajo, hasta alcanzar finalmente el valor crítico Nc. El mínimo ancho del canal, para el cual el caudal Q todavía puede ser transportado con el valor constante de Ha y una profundidad y = y c' puede obtenerse con la ecuación (1):
(3.1)
(3.2)
Cualquier contracción adicional de las paredes del canal producirá un remanso hacia aguas arriba. Igual resultado de obtiene, si la profundidad del canal es demasiado grande. Así, por ejemplo, también pueden obtenerse las condiciones de flujo crítico disponiendo un umbral en el fondo y manteniendo constante el ancho del canal, de tal modo que el punto G alcance la ubicación extrema admisible Gc. La máxima sobre-elevación admisible del fondo que produce flujo crítico manteniendo constante el ancho, se obtiene de la diferencia entre los valores de Ho en M y Gc. Dado que Ho en el punto Gc es igual a (3/2)Yc = (3/2) , se obtiene la siguiente expresión para la altura extrema del umbral (D z0)c:
(3.3)
donde y es la profundidad inicial en el punto M. Finalmente, si el flujo crítico se alcanza con el estrechamiento simultáneo de los lados y del fondo, se obtiene, de la ilustración 1, una línea de unión de M a la recta con línea discontinua y = yc, que se
...