Examen de cálculo integral
C. Alejandro C OExamen12 de Noviembre de 2015
3.572 Palabras (15 Páginas)333 Visitas
instituto tecnológico superior de san Martin Texmelucan
ingeniería industrial
Alejandro cerón Ochoa
examen de cálculo integral
[pic 3]
Problema 57
[pic 4](x + 1)2 ex dx
Integración por partes [pic 5]uv`=uv -[pic 6]u`v
u= (x+1)2 u`=2(x+1) v`=ex v=ex
= (x+1)2 ex -[pic 7]2(x+1) ex dx
[pic 8]2(x+1) ex dx
Se saca la constante
2[pic 9](x+1) ex dx
Integración por partes [pic 10]uv`=uv -[pic 11]u`v
u= (x+1), u`=1 v`=ex v=ex
=2 ( ( x+1) ex - [pic 12]1 ex dx )
= 2 ( ex ( x + 1 ) - [pic 13]ex dx
Aplicando la regla de integración [pic 14]ex dx = ex
=2 (ex ( x+1)-ex)
= (x+1)2 ex – 2 ( ex (x+1) – ex ) +C
Problema 56
[pic 15]x ln ( [pic 16]) dx = [pic 17][pic 18] x ln ( x + 2 ) dx
Se saca la constante
[pic 19][pic 20]x ln (x+2) dx
Integración por partes [pic 21]uv`=uv -[pic 22]u`v[pic 23]
u= ln (x+2) u`= [pic 24] v`=x v= [pic 25][pic 26][pic 27]
= [pic 28] ( ln (x+2) [pic 29] - [pic 30][pic 31] [pic 32] dx)[pic 33]
= [pic 34] ([pic 35]x2 ln (x+2) - [pic 36][pic 37] dx
Sacar la constante[pic 38]
[pic 39] ([pic 40]x2 ln (x+2) - [pic 41][pic 42][pic 43] dx
Aplicar integración por sustitución [pic 44] f (g(x) ). G`=(x) dx = [pic 45]f (u) du , u= g(x)
u= x+2 du= 1 dx dx= 1 du[pic 46]
=[pic 47]( [pic 48] x2 ln (x+2) - [pic 49] [pic 50][pic 51] 1dx )[pic 52]
=[pic 53]( [pic 54] x2 ln (x+2) - [pic 55] [pic 56][pic 57] du )
u= x+2 x= u-2[pic 58][pic 59]
=[pic 60]( [pic 61] x2 ln (x+2) - [pic 62] [pic 63][pic 64] du)
Simplificando
=[pic 65]( [pic 66] x2 ln (x+2) - [pic 67] [pic 68]u+[pic 69]-4du)
Aplicar la regla de la suma [pic 70]f (x) ± g (dx= [pic 71]f (x) dx ± [pic 72]g (x) dx
=[pic 73]( [pic 74] x2 ln (x+2) - [pic 75] ([pic 76]u du +[pic 77][pic 78]du -[pic 79]4du) )
[pic 80]u du[pic 81]
Aplicando regla de la potencia [pic 82]xa dx =[pic 83] a≠ -1 [pic 84]
= [pic 85][pic 86][pic 87]
= [pic 88]
[pic 89][pic 90]du
Se saca la constante
4[pic 91][pic 92] du
Aplicando la regla de integración [pic 93][pic 94]du= ln (u)[pic 95]
= 4 ln (u)
[pic 96]4du [pic 97]f (a) dx= x. f (a)[pic 98]
= 4u
[pic 99]
=[pic 100]( [pic 101] x2 ln (x+2) - [pic 102] ([pic 103]+ 4 ln (u) – 4 u) )
Sustituimos u= x+2[pic 104]
=[pic 105]( [pic 106] x2 ln (x+2) - [pic 107] (([pic 108])+ 4 ln (x+2) - 4 (x+2) -))
Simplificamos [pic 109][pic 110]
=[pic 111]( [pic 112] x2 ln (x+2) + [pic 113] (- [pic 114] (x+2)+ 4 (x+2) - 4 ln (x+2) ))+C
Problema 66
[pic 115]
Integración por método de sustitución [pic 116] f (g(x) ). G`=(x) dx = [pic 117]f (u) du , u= g(x)
u= [pic 118]: du= [pic 119] du= [pic 120], dx= u du
=[pic 121]xu udu
=[pic 122]xu2 du
u= [pic 123] x=[pic 124](u2 – 1 )[pic 125]
= [pic 126][pic 127](u2 – 1 ) u2 du
Sacamos la constante
[pic 128][pic 129](u2 – 1) u2 du
=[pic 130][pic 131](u4 –u2 )du
Aplicando regla de la suma
=[pic 132]([pic 133]u4 du - [pic 134]u2 du)
[pic 135][pic 136][pic 137]
[pic 138]u4 du = [pic 139] = [pic 140]
[pic 141][pic 142][pic 143]
[pic 144]u2 du = [pic 145] = [pic 146]
[pic 147][pic 148]
=[pic 149]([pic 150] - [pic 151] )
Sustituir u= [pic 152][pic 153][pic 154]
=[pic 155]( [pic 156]
Simplificar [pic 157]
= [pic 158]([pic 159][pic 160] - [pic 161][pic 162])+C
...