ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Polinomios


Enviado por   •  2 de Diciembre de 2014  •  794 Palabras (4 Páginas)  •  174 Visitas

Página 1 de 4

En matemáticas, un polinomio (del latín polynomius, y este del griego, πολυς [polys] ‘muchos’ y νόμος [nómos] ‘regla’, ‘prescripción’, ‘distribución’)1 2 3 es una expresión matemática constituida por un conjunto finito de variables (no determinadas o desconocidas) y constantes (números fijos llamados coeficientes), utilizando únicamente las operaciones aritméticas de suma, resta y multiplicación, así como también exponentes enteros positivos. En términos más precisos, es una relación n-aria de monomios, o una sucesión de sumas y restas de potencias enteras de una o de varias variables indeterminadas.

Es frecuente el término polinómico (ocasionalmente también el anglicismo polinomial), como adjetivo, para designar cantidades que se pueden expresar como polinomios de algún parámetro, como por ejemplo: tiempo polinómico, etc.

Los polinomios son objetos muy utilizados en matemáticas y en ciencia. En la práctica, son utilizados en cálculo y análisis matemático para aproximar cualquier función derivable; las ecuaciones polinómicas y las funciones polinómicas tienen aplicaciones en una gran variedad de problemas, desde la matemática elemental y el álgebra hasta áreas como la física, química, economía y las ciencias sociales.

En álgebra abstracta, los polinomios son utilizados para construir los anillos de polinomios, un concepto central en teoría de números algebraicos y geometría algebraica.

Índice [ocultar]

1 Definición algebraica

1.1 Polinomios de una variable

1.2 Polinomios de varias variables

1.3 Grado de un polinomio

2 Operaciones con polinomios

3 Funciones polinómicas

3.1 Ejemplos de funciones polinómicas

4 Factorización de polinomios

5 Historia

6 Véase también

7 Referencias

8 Enlaces externos

Definición algebraica[editar]

Los polinomios están constituidos por un conjunto finito de variables (no determinadas o desconocidas) y constantes (llamadas coeficientes), con las operaciones aritméticas de suma, resta y multiplicación, así como también exponentes enteros positivos. Pueden ser de una o de varias variables.

Polinomios de una variable[editar]

Para a0, …, an constantes en algún anillo A (en particular podemos tomar un cuerpo, como \scriptstyle\mathbb{R} o \scriptstyle\mathbb{C}, en cuyo caso los coeficientes del polinomio serán números) con an distinto de cero y n \in \mathbb{N}, entonces un polinomio, P_{}^{}, de grado n en la variable x es un objeto de la forma

P(x)_{}^{} = a_n x^n + a_{n-1} x^{n - 1}+ \cdots + a_1 x^{1} + a_0 x^{0}.

Un polinomio P(x) \in K[x] no es más que una sucesión matemática finita \left\{{a_n}\right\}_n tal que a_n \in K.

Representado como:

P(x)_{}^{}=a_0+a_1x+a_2x^2+...+a_nx^n

el polinomio se puede escribir más concisamente usando sumatorios como:

P(x) = \sum_{i = 0}^{n} a_{i} x^{i}.

Las constantes a0, …, an se llaman los coeficientes del polinomio. A a0 se le llama el coeficiente constante (o término independiente) y a an, el coeficiente principal. Cuando el coeficiente principal es 1, al polinomio se le llama mónico o normalizado.

Polinomios de varias variables[editar]

Como ejemplo, de polinomios de dos variables desarrollando los binomios:

(2)\begin{cases}

(x + y)^2 = x^2 + 2xy + y^2\\

(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\\

(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4 \end{cases}

Estos polinomios son mónicos, homogéneos, simétricos y sus coeficientes son coeficientes binomiales.

Para obtener la expansión de las potencias de una resta (véase productos notables), basta con tomar -y en lugar de y en el caso anterior. La expresión (2) queda de la siguiente forma:

(x-y)^2=x^{2}-2xy+y^{2}\,

Los polinomios de varias variables, a diferencia de los de una variable, tienen en total más de una variable. Por ejemplo los monomios:

5xy, 3xz^2, 4xy^2z, \dots

En detalle el último de ellos 4xy_{}^2z es un monomio de tres variables (ya que en él aparecen las tres letras x, y y z), el coeficiente es 4, y los exponentes son 1, 2 y 1 de x, y y z respectivamente.

Grado de un polinomio[editar]

Artículo principal: Grado (polinomio)

Se define el grado de un monomio como el mayor exponente de su variable. El grado de un polinomio es el del monomio de mayor grado.

Ejemplos

P(x) = 2, polinomio de grado cero (el polinomio solo consta del término independiente).

P(x) = 3x + 2, polinomio de grado uno.

P(x) = 3x² + 2x, polinomio de grado dos.

P(x) = 2x3+ 3x + 2, polinomio de grado tres.

Convencionalmente se define el grado del polinomio nulo como \scriptstyle -\infty. En particular los números son polinomios de grado cero.

Operaciones con polinomios[editar]

Artículo principal: Operaciones con polinomios

Los polinomios se pueden sumar y restar agrupando los términos y simplificando los monomios semejantes. Para multiplicar polinomios se multiplica cada término de un polinomio por cada uno de los términos del otro polinomio y luego se simplifican los monomios semejantes.

Ejemplo

Sean los polinomios: P(x) = (2x_{}^3+4x+1) y Q(x)_{}^{} = (5x^2+3) , entonces el producto es:

P(x)Q(x)_{}^{} = (2x_{}^3+4x+1)(5x^2+3) = (2x_{}^3+4x+1)(5x^2) + (2x^3+4x+1)(3)= (10x_{}^5 + 20x^3 + 5x^2) + (6x^3+12x+3)= 10x_{}^5 + 26x^3 + 5x^2 + 12x + 3

Para poder realizar eficazmente la operación se tiene que adquirir los datos necesarios de mayor a menor. Una fórmula analítica que expresa el producto de dos polinomios es la siguiente:

P(X)Q(X)_{}^{} = \left( \sum_{i=0}^m a_i X^i \right)

\left(\sum_{j=0}^n b_j X^j \right) =

\sum_{k=0}^{m+n} \left(\sum_{p=0}^k a_p b_{k-p} \right) X^k

Aplicando esta fórmula al ejemplo anterior se tiene:

...

Descargar como  txt (5.6 Kb)  
Leer 3 páginas más »
txt