ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

TEORIA DE LA ESTIMACION ESTADISTICA


Enviado por   •  2 de Noviembre de 2012  •  1.214 Palabras (5 Páginas)  •  1.372 Visitas

Página 1 de 5

“ TEORIA DE LA ESTIMACION ESTADÍSTICA “

Estimación de Parámetros

La teoría de muestreo puede emplearse para obtener información acerca de muestras obtenidas aleatoriamente de una población conocida. Sin embargo, desde un punto de vista practico, suele ser mas importante y ser capaz de inferir información acerca de una población a partir de muestras de ellas. Dichos problemas son tratados por la inferencia estadística que utiliza principios de muestreo. Un problema importante de la inferencia estadística es la estimación de parámetros poblacionales o simplemente parámetros ( como la media y la varianza poblacionales ), a partir de los estadísticos muéstrales correspondientes o estadísticos ( como la media y la varianza muestral.

Estimados sin Sesgo

Si la media de la distribución muestral de un estadístico es igual al parámetro poblacional correspondiente, el estadístico se denomina estimador sin sesgo del parámetro; de otra manera, es denominado estimador sesgado. Los valores correspondientes de dichos estadísticos se llaman estimados sin sesgo o sesgados, respectivamente.

1.- La media de la distribución muestral de las medias  es x , la media poblacional. Por lo tanto, la media muestral x es un estimado sin sesgo de la media poblacional .

2.- La media de la distribución muestral de las varianzas es :

s2 = ( N-1/ N ) 2

donde 2 es la varianza poblacional y N es el tamaño de la muestra .Entonces, la varianza muestral s2 es un estimado sesgado de la varianza poblacional 2. Usando la varianza modificada.

Ŝ2 =( N/ N-1 )s2

Se encuentra que ŝ2 = 2 , de modo que Ŝ2 es un estimado sin sesgo de 2 .Sin embargo ŝ es un estimado de .En términos de esperanza matemática se podía decir que un estadístico no esta sesgado si su esperanza es igual al parámetro poblacional correspondiente. Por lo tanto, x y Ŝ2 no están sesgados , porque E

Estimados Eficientes

Si las distribuciones muéstrales de dos estadísticos tienen la misma media o esperanza matemática entonces el estadístico con la menor varianza se denomina estimador eficiente de la media , mientras que el otro estadístico se le llama estimador ineficiente. Los valores correspondientes de los estadísticos se conocen, respectivamente , como estimadores eficientes. Si se consideran todos los estadísticos posibles, cuyas distribuciones muéstrales tienen la misma media, aquel con la menor varianza suele denominarse el mejor o mas eficiente estimador de dicha media.

La distribución muestral de la media y la mediana tienen la misma media; a saber la media poblacional. Sin embargo, la varianza de la distribución muestral de las medias es mas pequeña que la varianza de la distribución muestral de las medianas . por lo tanto, la media muestral ofrece un estimado ineficiente de esta De todos los estadísticos que estiman la media poblacional, la media muestral ofrece el mejor o mas eficiente estimado. En la practica , suelen usarse los estimados ineficientes debido a la relativa facilidad con que se obtienen algunos de ellos.

Estimados por Punto y Estimados por Intervalo; su Confiabilidad

El estimado de un parámetro poblacional dado por un solo numero se denomina estimado puntual del parámetro. El estimado de un parámetro poblacional dado por dos números , entre los cuales se considera esta el parámetro, se denomina estimado por intervalo del parámetro. Los estimados por intervalo indican la precisión de un estimado y son, por lo tanto preferibles a los estimados por punto.

Ejemplo: Si se dice que una distancia medida es de 5.28 metros se esta dando un estimado por

...

Descargar como (para miembros actualizados)  txt (7 Kb)  
Leer 4 páginas más »
Disponible sólo en Clubensayos.com