ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Calculo Personajes

Sooyjess13 de Abril de 2013

6.150 Palabras (25 Páginas)443 Visitas

Página 1 de 25

Actividad: 00

Tema: Desarrollo Histórico del calculo

Competencia: Expresa ideas y conceptos mediante representaciones lingüísticas, matemáticas o graficas.

Fecha: Mo 082812 -00

Isaac Newton (1642-1727)

Nació el 25 de Diciembre de 1642 según el calendario Juliano, todavía usado por entonces en Inglaterra, o el 4 de Enero de 1643 con respecto a nuestro calendario Gregoriano. Fue profesor de matemáticas en Cambridge y luego jefe de la casa de la moneda en Londres. Sus principales ideas fueron desarrolladas en 1664-1666 desarrolló sus ideas de la gravitación universal, de la teoría de los colores y sobre la serie del binomio y el cálculo de fluxiones.

De naturaleza entonces tímida era reacio a publicar sus resultados, para asi evitar las posibles críticas y controversias de sus contemporáneos.

En Octubre de 1666 escribió un tratado sobre fluxiones y en 1669 De análisis, un tratado sobre series infinitas que circuló en forma de manuscrito entre los miembros de la Royal Society. Hay otro tratado sobre fluxiones y series infinitas de 1671 y otro sobre la cuadratura de curvas de 1693.

Sin embargo estos fueron publicados hasta bien tarde y algunos sólo lo fueron después de su muerte. De analysi fue publicado en 1711 y el tratado sobre cuadratura de curvas, De Quadratura Curvarum de 1693 apareció como un apéndice de su Opticksen 1704. Su obra más famosa, donde expone su teoría de la gravitación universal, la Principal fue publicada en 1687, pero sus argumentos son muy geométricos y sólo dan una idea de sus métodos del cálculo infinitesimal.

De entre el trabajo matemático de Newton, profundo y poderoso, se pueden distinguir algunos temas centrales. Estos son los desarrollos en serie de potencias, en especial el desarrollo del binomio, algoritmos para hallar raíces de ecuaciones y de inversión de series, relación inversa entre diferenciación e integración y el concepto de fluentes y fluxiones como variables que cambian en el tiempo. Newton estuvo muy interesado también en óptica, dinámica, alquimia, cronología de la historia y en la interpretación de las sagradas escrituras.

Gotfried Wilhem Leibniz (1646-1716)

Era hijo del vice-presidente de la facultad de filosofía de la universidad de Leipzig. De joven, estudió filosofía, derecho y lenguas clásicas. Poco después de acabar sus estudios, Leibniz empezó en 1672 una misión diplomática en Paris donde permanecería unos cuatro años hasta 1676. Allí conoció a numerosos filósofos y miembros de la alta sociedad, en particular al holandés C. Huygens (1629-1695), entonces miembro de la recién creada Académie Royale des Sciences. Como curiosidad Huygens le planteó a Leibniz que hallara la suma de los inversos de los números triangulares. Mediante sumas y diferencias Leibniz fue capaz de hallar la suma de esta serie y entonces creció su interés en estudiar matemáticas, cuya formación hasta entonces había sido muy escasa. Huygens le recomendó que leyera la renovada edición en latín de van Schooten de la Géometrie de Descartes y los trabajos de Pascal. La entrada matemática de Leibniz fue entonces impresionante, ya que le llevó al descubrimiento del cálculo en 1675 y su elaboración y publicación en dos cortos artículos del Acta Eruditorum después en 1684 y 1686, el primero sobre cálculo diferencial y el segundo sobre cálculo integral.

El trabajo de Leibniz se conoce principalmente por los numerosos artículos que publicó en Acta y por sus cartas personales y manuscritos que se conservan en Hannover. Entre estos documentos están los manuscritos fechados el 25, 26 y 29 de Octubre y el 1 y 11 de Noviembre de 1675 donde Leibniz estudia la cuadratura de curvas y desarrolla su cálculo diferencial e integral.

Uno de los ingredientes fundamentales del cálculo de Leibniz son las reglas para la manipulación de los símbolos " " y "d" de la integral y la diferencial. Esto refleja sus ideas filosóficas de buscar un lenguaje simbólico y operacional para representar los conceptos e ideas del pensamiento de tal manera que los razonamientos y argumentos se puedan escribir por símbolos y fórmulas. En matemáticas su cálculo es en parte esto, un algoritmo para escribir los métodos geométricos de cuadraturas y tangentes por medio de símbolos y fórmulas. Las otras dos ideas fundamentales del cálculo de Leibniz son la relación entre la sumas de sucesiones con las diferencias de sus términos consecutivos

y el llamado triángulo característico.

Leibniz pasó la mayor parte del resto de su vida en Alemania, como consejero del duque de Hannover. Aparte de la invención y del desarrollo de su cálculo y en la solución de problemas geométricos y de ecuaciones diferenciales, Leibniz tiene otros trabajos en solvabilidad de ecuaciones y determinantes y escribió y contribuyó enormemente en prácticamente todos los campos del conocimiento humano, religión,

política, historia, física, mecánica, tecnología, lógica, geología, linguística e historia natural.

Isaac Barrow (Londres, octubre, 1630 – id., 4 de mayo, 1677)

Fue un teólogo, profesor y matemático inglés al que históricamente se le ha dado menos mérito en su papel en el desarrollo del cálculo moderno. En concreto, en su trabajo respecto a la tangente; por ejemplo, Barrow es famoso por haber sido el primero en calcular las tangentes en la curva de Kappa. Isaac Newton fue discípulo de Barrow.

Barrow empezó el colegio en Charterhouse (donde era tan agresivo y combativo que se cuenta que su padre rezaba a Dios para pedirle que, si algún día tuviera que llevarse a alguno de sus hijos, se llevara a Isaac). Completó su educación en el Trinity College, Cambridge, donde su tío y tocayo, era Miembro de la Junta de Gobierno del colegio. Fue muy estudioso, sobresaliendo especialmente en matemáticas; tras graduarse en 1648, le fue concedido un puesto de investigación en 1649. Residió unos cuantos años en Cambridge, y le fue ofrecido un puesto de profesor de Griego en Cambridge, pero en 1655 fue expulsado debido a la persecución a la que era sometido por los independientes. Regresó a Inglaterraen 1659. Fue ordenado al año siguiente, así como nombrado profesor Regius de griego en Cambridge. En 1662 fue profesor de Geometría en el Gresham College, y en 1663 fue elegido primer profesor Lucasiano en Cambridge. Mientras ocupaba esta cátedra publicó dos trabajos matemáticos de gran aprendizaje y elegancia, el primero de ellos en Geometría y el segundo en Óptica. En 1669 dejó la cátedra en favor de su pupilo, Isaac Newton, quien fue considerado durante mucho tiempo el único matemático inglés que le ha superado.

Escribió otros importantes tratados en matemáticas, pero en la literatura se dedicó especialmente a escribir sermones, que fueron obras maestras de argumentaciones elocuentes, donde su tratado Pope's Supremacy es considerado como uno de los tratados de controversia más perfectos que existen. Barrow como hombre fue en todos los aspectos digno de sus grandes talentos, aunque tuvo una gran vena excéntrica. Murió sin casarse en Londres a la temprana edad de 47 años.

Su primer trabajo fue una edición completa de los Elementos de Euclides, que fue editado en latín en 1655 y posteriormente en inglés en 1660; en1657 publicó una edición de Datos. Sus lecturas, publicadas en 1664, 1665 y 1666, fueron más tarde publicadas en 1683 bajo el título de Lecciones Matemáticas (en latín Lectiones Mathematicae); la mayoría hablan de fundamentos de metafísica para verdades matemáticas. Sus lecturas de 1667 fueron publicadas el mismo año, y hablan del análisis sobre cómo Arquímedes pudo llegar a los resultados que obtuvo. En 1669publicó sus Lectiones Opticae et Geometricae en el que se aproxima al actual proceso de diferenciación al determinar tangentes a curvas y estableció que la derivación y la integración son procesos inversos.

Pierre de Fermat (Beaumont, Francia, 1601 - Castres, id., 1665)

Matemático francés. Poco se conoce de sus primeros años, excepto que estudió derecho, posiblemente en Toulouse y Burdeos. Interesado por las matemáticas, en 1629 abordó la tarea de reconstruir algunas de las demostraciones perdidas del matemático griego Apolonio relativas a los lugares geométricos; a tal efecto desarrollaría, contemporánea e independientemente de René Descartes, un método algebraico para tratar cuestiones de geometría por medio de un sistema de coordenadas.

Diseñó también un algoritmo de diferenciación mediante el cual pudo determinar los valores máximos y mínimos de una curva polinómica, amén de trazar las correspondientes tangentes, logros todos ellos que abrieron el camino al desarrollo ulterior del cálculo infinitesimal por Newton y Leibniz. Tras asumir correctamente que cuando la luz se desplaza en un medio más denso su velocidad disminuye, demostró que el camino de un rayo luminoso entre dos puntos es siempre aquel que menos tiempo le cuesta recorrer; de dicho principio, que lleva su nombre, se deducen las leyes de la reflexión y la refracción. En 1654, y como resultado de una larga correspondencia, desarrolló con Blaise Pascal los principios de la teoría de la probabilidad.

Otro campo en el que realizó destacadas aportaciones fue el de la teoría de números, en la que empezó a interesarse tras consultar una edición de la Aritmética de Diofanto; precisamente en el margen de una página de dicha edición fue donde anotó el célebre teorema que lleva su nombre y que tardaría más de tres siglos en demostrarse. De su trabajo en dicho campo se derivaron importantes resultados relacionados con las propiedades

...

Descargar como (para miembros actualizados) txt (38 Kb)
Leer 24 páginas más »
Disponible sólo en Clubensayos.com