ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Electrocardiograma


Enviado por   •  17 de Enero de 2014  •  4.077 Palabras (17 Páginas)  •  301 Visitas

Página 1 de 17

Actividad eléctrica del corazón[editar · editar código]

Sistema de conducción eléctrica del corazón: 1. Nodo SA; 2. Nódulo AV.

El corazón tiene cuatro cámaras: dos aurículas y dos ventrículos, izquierdos y derechos. La aurícula derecha recibe la sangre venosa del cuerpo y la envía al ventrículo derecho el cual la bombea a los pulmones, lugar en el que se oxigena y del que pasa a la aurícula izquierda. De aquí la sangre se deriva al ventrículo izquierdo, de donde se distribuye a todo el cuerpo y regresa a la aurícula derecha cerrando el ciclo cardíaco.

Para que la contracción cíclica del corazón se realice en forma sincrónica y ordenada, existe un sistema de estimulación y conducción eléctrica compuesto por fibras de músculo cardíaco especializadas en la transmisión de impulsos eléctricos. Aunque el corazón tiene inervación por parte del sistema nervioso simpático, late aun sin estímulo de este, ya que el sistema de conducción es autoexcitable. Es por esto que el corazón sigue latiendo aún cuando lo extirpamos, para un trasplante de corazón, por ejemplo.

El sistema de conducción se inicia con la despolarización cardíaca y debe transmitir ese impulso eléctrico desde las aurículas hacía los ventrículos. Para ello se compone de los siguientes elementos: el nódulo sinoauricular(o sinusal), el nódulo auriculoventricular, el haz de Hiss, con sus ramas derecha e izquierda y las Fibras de Purkinje.

En el cuerpo humano se generan una amplia variedad de señales eléctricas, provocadas por la actividad química que tiene lugar en los nervios y músculos que lo conforman. El corazón, por ejemplo, produce un patrón característico de variaciones de voltaje. El registro y análisis de estos eventos bioeléctricos son importantes desde el punto de vista de la práctica clínica y de la investigación. Los potenciales se generan a nivel celular, es decir, cada una de las células es un diminuto generador de voltaje.

Un electrocardiograma (ECG) es una prueba física ampliamente utilizada para valorar la condición del corazón en forma no invasiva. Dicha prueba se usa para evaluar el estado del sistema de conducción del corazón, el del músculo, y también, en forma indirecta, la condición de este órgano como una bomba y la aparición de ritmos patológicos causados por daño al tejido de conducción de las señales eléctricas, u otros trastornos no-cardíacos.7 8 El ECG es la representación gráfica de la actividad bioeléctrica del músculo cardíaco, por lo que un equipo de registro de ECG (electrocardiógrafo) es comparable a un voltímetro que realiza una función de registrador.

Despolarización y repolarización del corazón[editar · editar código]

En el corazón existen tres tipos de células morfológica y funcionalmente diferentes:

las células contráctiles, responsables de la contracción del miocardio; de estas existen células contractiles auriculares y células contractiles ventriculares

las células especializadas, que son las que generan y conducen los impulsos nerviosos, y constituyen los nódulos sinusal y atrio-ventricular (de conducción lenta), el haz de His y las células de Purkinje (de conducción rápida).

las células endocrinas del corazón, que secretan el peptido natriuretico atrial, que es un auxilar en el control y regulación del la tensión arterial

Las células cardíacas presentan tres propiedades:

automatismo: son capaces de generar espontáneamente el impulso eléctrico que se propaga; el automatismo máximo se encuentra en las células del nodo sinoauricular, el marcapasos del corazón, y si éste falla, el nodo AV toma el relevo;

excitabilidad: capacidad de responder a un impulso eléctrico; las células especializadas generan ellas mismas los impulsos, mientras que las contráctiles son estimuladas por los impulsos propagados por las células adyacentes; existen diferentes fases de excitabilidad diferenciadas por el potencial de acción (PA) de las células cardíacas, y diferentes periodos refractarios (tiempo requerido para recuperar la excitabilidad);

conducción: capacidad de transmitir un impulso eléctrico a las células adyacentes; las velocidades de conducción normales en las diferentes estructuras cardíacas son las siguientes:

aurículas: 1 - 2 m/s

nodo AV: 0.02 - 0.05 m/s

sistema His - Purkinje: 1.5 -3.5 m/s.

ventrículos: 0.4 m/s

La velocidad de conducción depende de la rapidez del inicio del PA, que es rápido en las células de respuesta rápida, y lento en las células de respuesta lenta.

Mecanismo de activación celular:

Artículo principal: Potencial de acción cardíaco

Fases de un potencial de acción (PA) cardíaco. La elevación rápida del voltaje ("0") corresponde a la entrada de iones sodio, mientras que los dos descensos ("1" y "3", respectivamente) corresponden a la inactivación de los canales para el sodio, y a la salida de iones potasio durante la repolarización. La plataforma característica del PA cardíaco ("2") resulta de la apertura de los canales para el calcio sensibles al voltaje.

En reposo, durante la diástole eléctrica, hay un equilibrio entre:9

las cargas positivas al exterior de las células, debidas a la acumulación de iones sodio (Na+: 20mM int. frente a 145mM ext.) y calcio (Ca2+: 0.0001mM int. frente a 2.5mM ext.); por otro lado, también hay una mayor concentración de iones cloro en el exterior (Cl-: 25mM int. frente a 140mM ext.);

las cargas negativas al interior, debidas a la acumulación de ciertos aniones impermeables, como el aspartato y el glutamato, a pesar de la presencia de iones potasio (K+: 150mM int. frente a 4mM ext.).

Esta diferencia de cargas genera una diferencia de potencial eléctrico denominado potencial de membrana diastólico o potencial de reposo (-70 a -90 mV), que se mantiene debido a la diferente permeabilidad de la membrana externa cardíaca (el sarcolema) para estos iones, así como a la presencia de bombas iónicas que transportan iones de forma activa a través de la membrana, con consumo de energía en forma de ATP.

Las células del sistema de conducción se despolarizan de forma espontánea, modificando el transporte transmembrana de los iones Na+, K+ y Ca2+, lo que genera un PA; esta es la base del automatismo de las células cardiacas especializadas. El grado de automatismo es diferente en las distintas estructuras: nodo sinusal > nodo AV > células del haz de His y de Purkinje.

Durante la fase de despolarización (fase 0 y 1 del PA, paso de -90 a 20 mV) cada una de las células miocárdicas (y todas las células del ventrículo izquierdo simultáneamente, por lo

...

Descargar como (para miembros actualizados)  txt (26 Kb)  
Leer 16 páginas más »
Disponible sólo en Clubensayos.com