ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Estructura De Las Proteínas Y Enzimas.


Enviado por   •  30 de Noviembre de 2014  •  1.860 Palabras (8 Páginas)  •  317 Visitas

Página 1 de 8

Estructuras de las Proteínas y Enzimas.

ESTRUCTURA PRIMARIA

Se considera como estructura primaria a la secuencia lineal específica (sin ramificaciones) de aminoácidos de una cadena polipeptídica la cual es el resultado de la traducción de la información genética contenida en la secuencia de nucleótidos del ADN. La importancia desde el punto de vista químico de la estructura primaria, radica en la secuencia de los grupos laterales de los aminoácidos (cadenas laterales, R) dado que es el componente variable de la molécula que proporciona la identidad a la cadena. Por otra parte, el significado biológico de esta secuencia se basa en el control que ella ejerce en la organización de los niveles de complejidad superiores de la estructura proteica ya que esta permitirá en última estancia la determinación de su actividad biológica, es decir, la secuencia de aminoácidos tiene la información necesaria para que la molécula adopte una conformación tridimensional adecuada.

Es tan importante esta secuencia que el cambio en solo un aminoácido como resultado de una mutación, puede ser trágico para la vida de un organismo.

El grado de tolerancia a los cambios depende del grado de alteración de la geometría que presente la estructura proteica, así como del comportamiento químico que tiene la cadena lateral del aminoácido sustituido (polar, no polar, básico o ácido).

Cabe resaltar que todas las proteínas sin importar su nivel de organización se originan de una estructura primaria que posteriormente adopta una conformación tridimensional específica. No obstante, una proteína que permanece con su estructura primaria inmodificable pero funcional es la insulina, cuya secuencia de aminoácidos se conoció por primera vez a principios de la década de 1950.

ESTRUCTURA SECUNDARIA

Consiste en el enrollamiento de la cadena peptídica sobre su propio eje para formar una hélice o alguna otra estructura tridimensional específica. La estructura secundaria más común es la a-hélice (alfa), la cual se caracteriza por formar una estructura geométrica en espiral, muy uniforme, en la que cada vuelta está constituida por 3,6 aminoácidos.

La hélice se mantiene mediante puentes de hidrógeno entre el hidrógeno del grupo amino del enlace peptídico de un aminoácido y el grupo carboxilo del enlace peptídico de otro. Dentro de este grupo se pueden mencionar proteínas como el colágeno, la queratina, elastína

Otro tipo común de estructura secundaria es la hoja ß plegada, que se caracteriza por presentarse de forma aplanada y extendida, además posee un máximo de enlaces de hidrógeno entre los enlaces peptídicos. Esta estructura consta de varias cadenas peptídicas que permanecen enfrentadas y se mantienen juntas con enlaces de hidrógeno en un arreglo a manera de zig-zag. La estructura laminar formada le confiere flexibilidad más no elasticidad (Figura 2). Debido a que toda cadena polipeptídica tiene un extremo C-terminal en una dirección y un extremo N- terminal en la otra, dos cadenas enlazadas con hidrógeno y una al lado de la otra pueden correr en la misma dirección, paralelas, o en dirección opuesta, antiparalela. Un ejemplo de estas proteínas es la fibroína de la seda.

*Existen dos tipos de estructura secundaria:

1.- La a(alfa)-hélice

Esta estructura se forma al enrollarse helicoidalmente sobre sí misma la estructura primaria. Se debe a la formación de enlaces de hidrógeno entre el -C=O de un aminoácido y el -NH- del cuarto aminoácido que le sigue.

2.- La conformación beta

En esta disposición los aminoácidos no forman una hélice sino una cadena en forma de zigzag, denominada disposición en lámina plegada.Presentan esta estructura secundaria la queratina de la seda o fibroína.

ESTRUCTURA TERCIARIA

Es raro para una proteína entera permanecer con la estructura de a-hélice u hoja ß-plegada . La mayoría de ellas adquieren formas tridimensionales complejas denominadas estructuras terciarias, debido a que mientras la secundaria trata fundamentalmente de la conformación de los aminoácidos adyacentes de la cadena polipeptídica, la estructura terciaria describe la conformación definitiva y específica de la proteína. Durante el enrollamiento de la cadena peptídica, para dar origen a la estructura terciaria, los puentes de hidrógeno y la interacciones iónicas e hidrofóbicas entre una parte de la cadena y otra son las fuerzas que mantienen los pliegues en posición espacial correcta. Por otra parte, los puentes disulfuro (-S-S-) que se forman entre los aminoácidos de cisteína pueden acercar partes que se hayan distantes en una proteína, de hecho algunos sitios activos de enzimas están constituidos por ellos. Además, en la proteína también se forman algunos otros enlaces covalentes para mantener su estructura terciaria que por lo general es globular.

Con respecto a la estructura terciaria de cadenas polipeptídicas largas, cabe destacar la presencia de regiones compactas semiindependientes denominadas dominios, que se caracterizan por poseer una geometría casi esférica específica con un interior hidrofóbico y un exterior polar. El carácter independiente del dominio es evidente cuando al separlo de la cadena, su estructura primaria es capaz de plegarse sobre sí misma para adoptar la conformación nativa.

Una proteína puede presentar más de un dominio, a menudo interconectados por un segmento polipeptídico carente de estructura secundaria regular (Figura 3) y alternativamente estar separados por una hendidura o una región menos densa en la estructura terciaria de la proteína. Los diferentes dominios de una proteína pueden gozar de movimiento relativo que está asociado con una función. Así por ejemplo, en la enzima hexoquinasa, el sitio activo de unión del sustrato glucosa está en una hendidura entre dos dominios, cuando la glucosa se une a la hendidura, los dominios colindantes se cierran sobre el sustrato, atrapándolo para la fosforilación.

Ejemplos de proteínas con este nivel de organización terciaria son: algunas enzimas como la lisozima, algunas proteínas estructurales de la membrana, etc.

ESTRUCTURA CUATERNARIA

Como se mencionó anteriormente muchas proteínas tienen dos o más cadenas plegadas de polipéptidos (subunidades) para formar su estructura terciaria. En la estructura cuaternaria se consideran moléculas proteicas superiores a los 50

...

Descargar como (para miembros actualizados)  txt (12.7 Kb)  
Leer 7 páginas más »
Disponible sólo en Clubensayos.com