Matematicas 1
cristof4003 de Mayo de 2013
4.159 Palabras (17 Páginas)317 Visitas
números enteros
Los números enteros pueden sumarse, restarse, multiplicarse y dividirse, igual que puede hacerse con los números naturales
En la suma de dos números enteros, se determina por separado el signo y el valor absoluto del resultado.
Para sumar dos números enteros, se determina el signo y el valor absoluto del resultado del siguiente modo:
• Si ambos sumandos tienen el mismo signo: ese es también el signo del resultado, y su valor absoluto es la suma de los valores absolutos de los sumandos.
• Si ambos sumandos tienen distinto signo:
o El signo del resultado es el signo del sumando con mayor valor absoluto.
o El valor absoluto del resultado es la diferencia entre el mayor valor absoluto y el menor valor absoluto, de entre los dos sumandos.
Ejemplo. (+21) + (−13) = +8 , (+17) + (+26) = +43 , (−41) + (+19) = −22 , (−33) + (−28) = −61
La suma de números enteros se comporta de manera similar a la suma de números naturales:
La suma de números enteros cumple las siguientes propiedades:
• Propiedad asociativa. Dados tres números enteros a, b y c, las sumas (a + b) + c y a + (b + c) son iguales.
• Propiedad conmutativa. Dados dos números enteros a y b, las sumas a + b y b + a son iguales.
• Elemento neutro. Todos los números enteros a quedan inalterados al sumarles 0: a + 0 = a.
Ejemplo.
1. Propiedad asociativa:
[ (−13) + (+25) ] + (+32) = (+12) + (+32) = (+44)
(−13) + [ (+25) + (+32) ] = (−13) + (+57) = (+44)
2. Propiedad conmutativa:
(+9) + (−17) = −8
(−17) + (+9) = −8
Además, la suma de números enteros posee una propiedad adicional que no tienen los números naturales:
Elemento opuesto o simétrico. Para cada número entero a, existe otro entero −a, que sumado al primero resulta en cero: a + (−a) = 0.
Resta
La resta de números enteros es muy sencilla, ya que ahora es un caso particular de la suma.
La resta de dos números enteros (minuendo menos sustraendo) se realiza sumando el minuendo más el sustraendo cambiado de signo.
Ejemplos
(+10) − (−5) = (+10) + (+5) = +15
(−7) − (+6) = (−7) + (−6) = −13
(−4) − (−8) = (−4) + (+8) = +4
(+2) − (+9) = (+2) + (−9) = −7
Multiplicación
La multiplicación de números enteros, al igual que la suma, requiere determinar por separado el signo y valor absoluto del resultado.
En la multiplicación (o división) de dos números enteros se determinan el valor absoluto y el signo del resultado de la siguiente manera:
• El valor absoluto es el producto de los valores absolutos de los factores.
• El signo es «+» si los signos de los factores son iguales, y «−» si son distintos.
Para recordar el signo del resultado, también se utiliza la regla de los signos:
Regla de los signos
• (+) × (+)=(+) Más por más igual a más.
• (+) × (−)=(−) Más por menos igual a menos.
• (−) × (+)=(−) Menos por más igual a menos.
• (−) × (−)=(+) Menos por menos igual a más.
Ejemplo. (+4) × (−6) = −24 , (+5) × (+3) = +15 , (−7) × (+8) = −56 , (−9) × (−2) = +18.
La multiplicación de números enteros tiene también propiedades similares a la de números naturales:
La multiplicación de números enteros cumple las siguientes propiedades:
• Propiedad asociativa. Dados tres números enteros a, b y c, los productos (a × b) × c y a × (b × c) son iguales.
• Propiedad conmutativa. Dados dos números enteros a y b, los productos a × b y b × a son iguales.
• Elemento neutro. Todos los números enteros a quedan inalterados al multiplicarlos por 1: a × 1 = a.
Ejemplo.
1. Propiedad asociativa:
1. [ (−7) × (+4) ] × (+5) = (−28) × (+5) = −140
(−7) × [ (+4) × (+5) ] = (−7) × (+20) = −140
2. Propiedad conmutativa:
(−6) × (+9) = −54
(+9) × (−6) = −54
La suma y multiplicación de números enteros están relacionadas, al igual que los números naturales, por la propiedad distributiva:
Propiedad distributiva. Dados tres números enteros a, b y c, el producto a × (b + c) y la suma de productos (a × b) + (a × c) son idénticos.
Ejemplo.
• (−7) × [ (−2) + (+5) ] = (−7) × (+3) = −21
• [ (−7) × (−2) ] + [ (−7) × (+5) ] = (+14) + (−35) = −21
El orden de los números enteros puede resumirse en:
El orden de los números enteros se define como:
•
• Dados dos números enteros de signos distintos, +a y −b, el negativo es menor que el positivo: −b < +a.
• Dados dos números enteros con el mismo signo, el menor de los dos números es:
o El de menor valor absoluto, si el signo común es «+».
o El de mayor valor absoluto, si el signo común es «−».
• El cero, 0, es menor que todos los positivos y mayor que todos los negativos.
Ejemplo. +23 > −56 , +31 < +47 , −15 < −9 , 0 > −36
La recta numérica
Los números enteros negativos son más pequeños que todos los positivos y que el cero. Para entender como están ordenados se utiliza la recta numérica:
Se ve con esta representación que los números negativos son más pequeños cuanto más a la izquierda, es decir, cuanto mayor es el número tras el signo. A este número se le llama el valor absoluto:
El valor absoluto de un número entero es el número natural que resulta de quitarle el signo. El valor absoluto de 0 es simplemente 0. Se representa por dos barras verticales «| |».
Ejemplo. |+5| = 5 , |−2| = 2 , |0| = 0.
Operaciones de Números Racionales
Suma de números racionales
Para sumar y restar números racionales existen dos casos diferentes con los cuales podemos tratar, el primero es cuando poseen un denominador distinto entre los sumandos, y el otro es cuando tienen un denominador de igual valor y es por este por el que vamos a empezar.
Cuando resolvemos la adición de números racionales y la sustracción de números racionales con igual denominador, simplemente se mantiene el mismo denominador (que es el valor ubicado en la parte inferior de la fracción) y sumamos o restamos los numeradores (en la parte superior de la fracción) según sea el caso:
65+35=6+35=95
Cuando tenemos denominadores de distinto valor, lo que tenemos que hacer es buscar una fracción equivalente, y encontrar el mínimo común múltiplo de los denominadores a través de multiplicaciones o divisiones que los igualen y formen fracciones equivalente, tomando en cuenta que cualquier operación realizada debe también realizarse al numerador para no alterar el resultado, por ejemplo si multiplicamos el denominador por 4 para encontrar el mínimo común múltiplo también debemos multiplicar por 4 al numerador, veamos:
14+65=520+2420=5+2420=2920
Notamos que el mínimo común múltiplo de 4 y 5 es 20, por lo tanto multiplicamos al primer sumando por 5 y al segundo por 4 para obtener un mismo denominador con fracciones equivalentes y luego los sumamos como fue mostrado en la operación anterior.
Multiplicación de números racionales
La multiplicación entre fracciones es sencilla si se sabe cómo hacer. En primer lugar, se multiplican los numeradores de todos los factores y a continuación el producto resultante se lo utiliza como numerador, luego se multiplican los denominadores y al resultado se lo ubica como denominador sin importar si el valor es igual o distinto, de esta manera:
43×56×12=4×5×13×6×2=2036=1018=59
En este caso el resultado pudo ser simplificado, dividiendo el numerador y el denominador para el mismo número hasta obtener el mínimo número entero en los dos cocientes.
En la multiplicación también existe un elemento inverso que da como resultado una unidad, tomando en cuenta que los números enteros también son números racionales si se los expresa como fracción, para explicarlo mejor, se ofrece algunos ejemplos:
13×3=13×31=33=1
Aunque entre fraccionarios no enteros, también sucede el mismo fenómeno:
57×75=3535=1
División de números racionales
Para dividir los números racionales, tomamos el numerador de la primera fracción y se lo multiplica por el denominador de la segunda fracción y este resultado será utilizado como numerador; a continuación se toma el denominador de la primera fracción y se lo multiplica por el numerador de la segunda fracción, y a ese resultado se lo ubica como denominador. Por lo tanto en el caso de la división, el orden de los cocientes si altera el resultado, veamos el siguiente ejemplo:
54÷23=5×34×2=158
Como se puede notar, para dividir los números racionales, se debe multiplicar en cruz, tomando en cuenta que el numerador y el denominador de la primera fracción no cambia de orden, pero los de la segunda fracción si lo hacen para lograr el resultado final.
Potenciación de números racionales
Para la potenciación de un número racional, se deben seguir estas simples reglas:
Si el número racional posee distintas potencias para distinto numerador y el denominador, solo se procede a potenciar cada cociente y simplificar si es posible:
anbm
2332=89
Cuando se tiene el mismo valor en el numerador y el denominador,
...