Las Conicas
sdam31 de Enero de 2013
6.741 Palabras (27 Páginas)499 Visitas
Sección cónica (o simplemente cónica) a todas las curvas intersección entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen las cónicas propiamente dichas. Se clasifican en tres tipos: elipse, parábola e hipérbola. Un cono circular recto.
La primera definición conocida de sección cónica surge en la Antigua Grecia, cerca del año 1000 (Menæchmus) donde las definieron como secciones «de un cono circular recto».1 Los nombres de hipérbola, parábola y elipse se deben a Apolonio de Perge. Actualmente, las secciones cónicas pueden definirse de varias maneras; estas definiciones provienen de las diversas ramas de la matemática: como la geometría analítica, la geometría proyectiva, etc.
Tipos
Secciones cónicas
En función de la relación existente entre el ángulo de conicidad (α) y la inclinación del plano respecto del eje del cono (β), pueden obtenerse diferentes secciones cónicas, a saber:
• β < α : Hipérbola (naranja)
• β = α : Parábola (azulado)
• β > α : Elipse (verde)
• β = 90º: Circunferencia (un caso particular de elipse) (rojo)
Si el plano pasa por el vértice del cono, se puede comprobar que:
• Cuando β > α la intersección es un único punto (el vértice).
• Cuando β = α la intersección es una recta generatriz del cono (el plano será tangente al cono).
• Cuando β < α la intersección vendrá dada por dos rectas que se cortan en el vértice.
• cuando β = 90º El ángulo formado por las rectas irá aumentando a medida β disminuye, hasta alcanzar el máximo (α) cuando el plano contenga al eje del cono (β = 0).
Características
La elipse es el lugar geométrico de los puntos del plano tales que la suma de las distancias a dos puntos fijos llamados focos es constante.
Además de los focos F y F´, en una elipse destacan los siguientes elementos:
• Centro,
• Eje mayor, AA´
• Eje menor, BB´
• Distancia focal, OF
La elipse con centro (0, 0) tiene la siguiente expresión algebraica:
La hipérbola es el lugar geométrico de los puntos del plano cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante y menor que la distancia entre los focos.
Tiene dos asíntotas (rectas cuyas distancias a la curva tienden a cero cuando la curva se aleja hacia el infinito). Las hipérbolas cuyas asíntotas son perpendiculares se llaman hipérbolas equiláteras.
Además de los focos y de las asíntotas, en la hipérbola destacan los siguientes elementos:
• Centro, O
• Vértices, A y A
• Distancia entre los vértices
• Distancia entre los focos
La ecuación de una hipérbola con centro (0, 0), es:
La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco, y de una recta llamada directriz.
Además del foco, F, y de la directriz, d, en una parábola destacan los siguientes elementos:
• Eje, e
• Vértice, V
• Distancia de F a d, p.
Una parábola, cuyo vértice está en el origen y su eje coincide con el de ordenadas, tiene la siguiente ecuación:
es una línea curva y cerrada donde todos sus puntos están a igual distancia del centro.
Una circunferencia es el lugar geométrico de los puntos de un plano que equidistan de otro punto fijo y coplanario llamado centro en una cantidad constante llamada radio.
La circunferencia sólo posee longitud. Se distingue del círculo en que éste es el lugar geométrico de los puntos contenidos en una circunferencia determinada; es decir, la circunferencia es el perímetro del círculo cuya superficie contiene.
Puede ser considerada como una elipse de excentricidad nula, o una elipse cuyos semiejes son iguales. También se puede describir como la sección, perpendicular al eje, de una superficie cónica o cilíndrica, o como un polígono de infinitos lados, cuya apotema coincide con su radio.
La circunferencia de centro en el origen de coordenadas y radio 1 se denomina circunferencia unidad o circunferencia goniométrica.
Elementos de la circunferencia
La mediatriz de una cuerda pasa por el centro de la circunferencia.
Existen varios puntos, rectas y segmentos, singulares en la circunferencia:
• Centro, el punto interior equidistante de todos los puntos de la circunferencia;
• Radio, el segmento que une el centro con un punto cualquiera de la circunferencia;
• Diámetro, el mayor segmento que une dos puntos de la circunferencia (necesariamente pasa por el centro);
• Cuerda, el segmento que une dos puntos de la circunferencia; (las cuerdas de longitud máxima son los diámetros)
• Recta Secante, la que corta a la circunferencia en dos puntos;
• Recta Tangente o simplemente Tangente, la que toca a la circunferencia en un sólo punto;
• Punto de tangencia, el de contacto de la recta tangente con la circunferencia;
• Arco, el segmento curvilíneo de puntos pertenecientes a la circunferencia;
• Semicircunferencia, cada uno de los dos arcos delimitados por los extremos de un diámetro.
Diámetros Conjugados
Par de diámetros conjugados en una elipse
Dos diámetros de una sección cónica se denominan conjugados cuando toda cuerdaparalela a uno de ellos es bisecada por el otro. Por ejemplo, dos diámetros de la circunferencia perpendiculares entre sí son mutuamente conjugados.
En una elipse dos diámetros son conjugados si y sólo si la tangente a la elipse en el extremo de un diámetro es paralela a la tangente al segundo extremo.
Posiciones relativas
La circunferencia y un punto
Un punto en el plano puede ser:
• Exterior a la circunferencia, si la distancia del centro al punto es mayor que la longitud del radio.
• Perteneciente a la circunferencia, si la distancia del centro al punto es igual a la longitud del radio.
• Interior a la circunferencia, si la distancia del centro al punto es menor a la longitud del radio.
La circunferencia y la recta
Una recta, respecto de una circunferencia, puede ser:
• Exterior, si no tienen ningún punto en común con ella y la distancia del centro a la recta es mayor que la longitud del radio.
• Tangente, si la toca en un punto (el punto de tangencia o tangente) y la distancia del centro a la recta es igual a la longitud del radio. Una recta tangente a una circunferencia es perpendicular al radio que une el punto de tangencia con el centro.
• Secante, si tiene dos puntos comunes, es decir, si la corta en dos puntos distintos y la distancia del centro a la recta es menor a la longitud del radio.
• Segmento circular, es el conjunto de puntos de la región circular comprendida entre una cuerda y el arco correspondiente
Dos circunferencias
Dos circunferencias, en función de sus posiciones relativas, se denominan:
• Exteriores, si no tienen puntos comunes y la distancia que hay entre sus centros es mayor que la suma de sus radios. No importa que tengan igual o distinto radio. (Figura 1)
• Tangentes exteriormente, si tienen un punto común y todos los demás puntos de una son exteriores a la otra. La distancia que hay entre sus centros es igual a la suma de sus radios. No importa que tengan igual o distinto radio. (Figura 2)
• Secantes, si se cortan en dos puntos distintos y la distancia entre sus centros es menor a la suma de sus radios. No importa que tengan igual o distinto radio. Dos circunferencias distintas no pueden cortarse en más de dos puntos. Dos circunferencias son secantes ortogonalmente si el ángulo entre sus tangentes en los dos puntos de contacto es recto. (Figura 3)
• Tangentes interiormente, si tienen un punto común y todos los demás puntos de una de ellas son interiores a la otra exclusivamente. La distancia que hay entre sus centros es igual al valor absoluto de la diferencia de sus radios. Una de ellas tiene que tener mayor radio que la otra. (Figura 4)
• Interiores excéntricas, si no tienen ningún punto común y la distancia entre sus centros es mayor que 0 y menor que el valor absoluto de la diferencia de sus radios. Una de ellas tiene que tener mayor radio que la otra.
• Interiores concéntricas, si tienen el mismo centro (la distancia entre sus centros es 0) y distinto radio. Forman una figura conocida como corona circular o anillo. Una de ellas tiene que tener mayor radio que la otra. (Figura 5)
• Coincidentes, si tienen el mismo centro y el mismo radio. Si dos circunferencias tienen más de dos puntos comunes, necesariamente son circunferencias coincidentes
.Ángulos en una circunferencia
Arco capaz: los cuatro ángulos inscritos determinan el mismo arco y por tanto son iguales.
Un ángulo, respecto de una circunferencia, pueden ser:
Ángulo central, si tiene su vértice en el centro de esta. Sus lados contienen a dos radios.
La amplitud de un ángulo central es igual a la del arco que abarca.
Ángulo inscrito, si su vértice es un punto de la circunferencia y sus lados contienen dos cuerdas.
La amplitud de un ángulo inscrito en una semi circunferencia equivale a la mayor parte del ángulo exterior
...