Correlacion Lineal
ArturoGCO29 de Septiembre de 2011
805 Palabras (4 Páginas)1.048 Visitas
INVESTIGACIÓN NÚMERO 2. SEGUNDO TEMA
CORRELACION LINEAL
En ocasiones nos puede interesar estudiar si existe o no algún tipo de relación entre dos variables aleatorias. Así, por ejemplo, podemos preguntarnos si hay alguna relación entre las notas de la asignatura Estadística I y las de Matemáticas I. Una primera aproximación al problema consistiría en dibujar en el plano R² un punto por cada alumno: la primera coordenada de cada punto sería su nota en estadística, mientras que la segunda sería su nota en matemáticas. Así, obtendríamos una nube de puntos la cual podría indicarnos visualmente la existencia o no de algún tipo de relación (lineal, parabólica, exponencial, etc.) entre ambas notas.
Otro ejemplo, consistiría en analizar la facturación de una empresa en un periodo de tiempo dado y de cómo influyen los gastos de promoción y publicidad en dicha facturación. Si consideramos un periodo de tiempo de 10 años, una posible representación sería situar un punto por cada año de forma que la primera coordenada de cada punto sería la cantidad en euros invertidos en publicidad, mientras que la segunda sería la cantidad en euros obtenidos de su facturación. De esta manera, obtendríamos una nube de puntos que nos indicaría el tipo de relación existente entre ambas variables.
En particular, nos interesa cuantificar la intensidad de la relación lineal entre dos variables. El
parámetro que nos da tal cuantificación es el coeficiente de correlación lineal de Pearson r,
cuyo valor oscila entre –1 y +1 :
Como se observa en los diagramas anteriores, el valor de r se aproxima a +1 cuando la correlación tiende a ser lineal directa (mayores valores de X significan mayores valores de Y), y se aproxima a –1 cuando la correlación tiende a ser lineal inversa.
Es importante notar que la existencia de correlación entre variables no implica causalidad.
Si no hay correlación de ningún tipo entre dos variables aleatorias, entonces tampoco habrá correlación lineal, por lo que r = 0. Sin embargo, el que ocurra r = 0 sólo nos dice que no hay correlación lineal, pero puede que la haya de otro tipo.
El siguiente diagrama resume el análisis del coeficiente de correlación entre dos variables:
REGRESION LINEAL, MINIMOS CUADRADOS
En aquellos casos en que el coeficiente de regresión lineal sea “cercano” a +1 o a –1, tiene
sentido considerar la ecuación de la recta que “mejor se ajuste” a la nube de puntos (recta de
mínimos cuadrados). Uno de los principales usos de dicha recta será el de predecir o estimar
los valores de Y que obtendríamos para distintos valores de X. Estos conceptos quedarán
representados en lo que llamamos diagrama de dispersión:
La regresión lineal simple comprende el intento de desarrollar una línea recta o ecuación matemática lineal que describe la reacción entre dos variables.
La regresión puede utilizadas de diversas formas. Se emplean en situaciones en la que las dos variables miden aproximadamente lo mismo, pero en las que una variable es relativamente costosa, o, por el contrario, es poco interesante trabajar con ella, mientras que con la otra variable no ocurre lo mismo.
La finalidad de una ecuación de regresión seria estimar los valores de una variable con base en los valores conocidos
...