ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Gestión de la calidad Actividad Numero 1

Miguel BardalesInforme28 de Febrero de 2017

729 Palabras (3 Páginas)308 Visitas

Página 1 de 3

[pic 1]Gestión de la calidad

Actividad Numero 1

Tamaño de la muestra

Miguel Bardales

3121979

24 de septiembre del 2016

San Pedro Sula Honduras.

Introducción

Este es uno de los temas más importantes de nosotros como estudiantes de una carrera como Ingeniería Industrial, muchos de los problemas a los que nos vamos a enfrentar en nuestros trabajos, no vamos a tener otra forma de poder solucionarlos si no es por un método estadístico y en cualquier método estadístico es necesario definir nuestra muestra.

Este tema solo es un principio de los que vamos a ver en nuestro curso de Gestión de la Calidad, siendo una base para nosotros poder cursar el curso ya que los demás temas van a estar relacionados con la muestra de una población, es por eso que debemos de entenderla de la mejor manera.

Objetivos Generales

  • Estudiar el significado del tamaño de la muestra, entendiendo como se aplica en los trabajos.
  • Entender la importancia del tamaño de la muestra en la estadística y así aplicar la estadística en la solución de problemas de calidad.

Objetivos Generales

  • Poder entender todo lo que conlleva la muestra para así poder aplicarla en nuestro proyecto sin ningún problema.

Resumen

El tamaño muestral dependerá de decisiones estadísticas y no estadísticas, pueden incluir por ejemplo la disponibilidad de los recursos, el presupuesto o el equipo que estará en campo.

El tamaño de la muestra normalmente es representado por "n" y siempre es un número entero positivo. No se puede hablar de ningún tamaño exacto de la muestra, ya que puede variar dependiendo de los diferentes marcos de investigación. Sin embargo, si todo lo demás es igual, una muestra de tamaño grande brinda mayor precisión en las estimaciones de las diversas propiedades de la población.

Determinar el tamaño de la muestra que se va a seleccionar es un paso importante en cualquier estudio de investigación. Por ejemplo, un investigador desea determinar la prevalencia de problemas oculares en niños en edad escolar y quiere realizar una encuesta.

La pregunta importante que debe ser contestada en todas las encuestas de muestra es: "¿Cuántos participantes deben ser elegidos para una encuesta?" Sin embargo, la respuesta no puede ser dada sin tener en cuenta los objetivos y circunstancias de las investigaciones.

La elección del tamaño de la muestra depende de consideraciones no estadísticas y estadísticas. Las consideraciones no estadísticas pueden incluir la disponibilidad de los recursos, la mano de obra, el presupuesto, la ética y el marco de muestreo. Las consideraciones estadísticas incluirán la precisión deseada de la estimación de la prevalencia y la prevalencia esperada de los problemas oculares en niños en edad escolar.

Antes de calcular el tamaño de la muestra necesitamos determinar varias cosas:

  • Tamaño de la población. Una población es una colección bien definida de objetos o individuos que tienen características similares. Hablamos de dos tipos: población objetivo, que suele tiene diversas características y también es conocida como la población teórica. La población accesible es la población sobre la que los investigadores aplicaran sus conclusiones.
  • Margen de error (intervalo de confianza). El margen de error es una estadística que expresa la cantidad de error de muestreo aleatorio en los resultados de una encuesta, es decir, es la medida estadística del número de veces de cada 100 que se espera que los resultados se encuentren dentro de un rango específico.
  • Nivel de confianza. Son intervalos aleatorios que se usan para acotar un valor con una determinada probabilidad alta. Por ejemplo, un intervalo de confianza de 95% significa que los resultados de una acción probablemente cubrirán las expectativas el 95% de las veces.
  • La desviación estándar. Es un índice numérico de la dispersión de un conjunto de datos (o población). Mientras mayor es la desviación estándar, mayor es la dispersión de la población.

Anexos

El tamaño de la muestra se calcula mediante la siguiente formula,

[pic 2]

Donde:

N= es el tamaño de la población

Z = Es la desviación del valor medio que aceptamos para lograr el nivel de confianza deseado

e = Es el margen de error máximo

p = Es la proporción que esperamos encontrar.

Conclusión

Es necesario que podamos entender estos términos que mencionamos no solo para poder aprobar la clase, si no para que podamos ser capaces de aplicar cada uno de estos términos en nuestra vida diaria (trabajo), ya que los datos estadísticos serán la mejor herramienta que vamos a tener para poder solucionar cualquier inquietud con nuestros trabajos.

...

Descargar como (para miembros actualizados) txt (5 Kb) pdf (98 Kb) docx (37 Kb)
Leer 2 páginas más »
Disponible sólo en Clubensayos.com