MATEMATICAS FINANCIERAS
morgam907 de Mayo de 2012
6.025 Palabras (25 Páginas)804 Visitas
Matemáticas Financieras
1. Introducción
2. Capitalización y descuento
3. Interés simple
4. Tipos de plazos de los intereses
5. Descuentos
6. Valor del dinero en el tiempo
7. Flujos variables
8. Anualidades
9. Perpetuidades
10. Interés
11. Tasas de interés y descuento equivalente
12. Inflación y tasas de interés
13. Préstamos
1. Introducción
No se sabe a ciencia cierta cuando aparecieron, pero de lo que si se está seguro es que las Matemáticas Financieras son una derivación de las matemáticas aplicadas que estudia el valor del dinero en el tiempo y que a través de una serie de modelos matemáticos llamados criterios permiten tomar las decisiones más adecuadas en los proyectos de inversión.
2. Capitalización y descuento
Consideramos dos tipos de interés: el interés simple y el interés compuesto.
3. Interés Simple
Una operación financiera es a interés simple cuando el interés es calculado sobre el capital (o principal) original y para el período completo de la transacción. En otras palabras, no hay capitalización de intereses.
Nomenclatura básica:
Símbolo Significando
VA Capital, principal, Valor Actual expresado en unidades monetarias
VF Capital más el interés, monto, Valor Futuro expresado en unidades monetarias
j Tasa nominal o la tasa de interés anual
t Número de años, tiempo,
m Número de capitalizaciones por año
n Número de períodos de composición
i Tasa periódica
TEA Tasa Efectiva Anual
VAN Valor Actual Neto
TIR Tasa Interna de Retorno
C Anualidad o cuota uniforme
VA Valor presente de una anualidad
VF Valor futuro de una anualidad
ia Tasa de interés anticipada
iv Tasa de interés vencida
UM Unidad Monetaria
3.1. Conceptos básicos
Los empresarios que obtienen dinero prestado tienen que pagar un interés (I) al propietario o a la entidad financiera por usar su dinero.
La cantidad prestada es el capital o principal (VA o P), la suma de ambos (capital más interés) recibe el nombre de monto (VF); el período de tiempo acordado para la devolución del préstamo es el plazo (n).
El interés cobrado es proporcional tanto al capital como al período del préstamo, está expresado por medio de una tasa de interés (i). Para la teoría económica, el interés es el precio del dinero.
Cuando sólo pagan intereses sobre el principal, es decir, sobre la totalidad del dinero prestado, se denomina interés simple.
Fórmula del interés simple:
El interés es el producto de los tres factores, capital (VA), tiempo (n) y tasa (i), así tenemos:
Que viene a ser la fórmula o ecuación para calcular el interés simple.
EJERCICIO 1 (Calculando el interés simple)
Un banco paga el 6% sobre los depósitos a plazos. Determinar el pago anual por interés sobre un depósito de UM 18,000.
Solución:
VA = 18,000; n = 1; i = 0.06; I = ?
[1] I = 18,000*1*0.06 = UM 1,080
Respuesta:
El banco paga anualmente sobre este depósito la suma de UM 1,080.
EJERCICIO 2
Un Banco obtiene fondos al costo de 12% y presta a los microempresarios al 58.6% anual, ganándose así el 46.6% bruto. Si los ingresos anuales que obtuvo de esta forma fueron de UM 500,000, ¿cuánto dinero prestó?
Solución
I = 500,000; n = 1; i = 0.466; VA = ?
[1] 500,000 = VA*1*0.466 despejamos VA:
Respuesta:
El Banco prestó UM 1’072,961.37
EJERCICIO 3 (Calculando el plazo de una inversión)
Una entidad financiera invirtió UM 250,000 al 17.6% en hipotecas locales y ganó UM 22,000. Determinar el tiempo que estuvo invertido el dinero.
Solución
VA = 250,000; I = 22,000; i = 0.176; n = ?
Despejamos n de la fórmula [1] I = VA*n*i
Respuesta:
El dinero estuvo invertido durante medio año.
EJERCICIO 4 (Calculando la tasa i de interés)
Si una empresa hipotecaria tiene invertido UM 320,000 durante 3½ años a interés simple y obtiene en total UM 146,250 de ingresos, ¿cuál es la tasa de interés?
Solución
I = 146,250; VA = 320,000; n = 3.5; i = ?
Despejamos i de la fórmula [1] I = VA*n*i:
Respuesta:
La empresa hipotecaria obtuvo el 13% sobre su inversión.
3.2. Monto
El monto es la suma obtenida añadiendo el interés al capital, esto es:
MONTO = CAPITAL + INTERES
Reemplazando en [1] por sus respectivos símbolos, obtenemos la fórmula general para el monto:
Fórmula para el monto (VF) a interés simple de un capital VA, que devenga interés a la tasa i durante n años.
De donde:
4. Tipos de plazos de los intereses
Generalmente conocemos dos tipos de plazos:
a) Interés Comercial o Bancario. Presupone que un año tiene 360 días y cada mes 30 días.
b) Interés Exacto. Tiene su base en el calendario natural: un año 365 o 366 días, y el mes entre 28, 29, 30 o 31 días.
El uso del año de 360 días simplifica los cálculos, pero aumenta el interés cobrado por el acreedor, es de uso normal por las entidades financieras.
La mayoría de ejercicios en este documento consideran el año comercial; cuando se utilice el calendario natural se indicará operar con el interés exacto.
EJERCICIO 5 (Interés Simple Comercial)
Jorge deposita UM 2,300, en una libreta de ahorros al 9% anual, ¿cuánto tendrá después de 9 meses?
1º Expresamos la tasa en meses: 0.09/12 = 0.0075, mensual:
Solución:
VA = 2,300; i = 0.0075; n = 9; VF = ?
2º Aplicamos la fórmula [2] y Excel:
[2] VF = 2,300 [1 + (0.0075*9)] = UM 2,455.25
Respuesta:
El valor futuro es UM 2,455.25
EJERCICIO 6 (Interés Simple Exacto)
Un pequeño empresario, con utilidades por UM 5,000 los deposita en una libreta de ahorros en un banco al 9.7% anual. Calcular cuánto tendrá al final de 8 meses.
1º Expresamos el plazo en años: (8 meses por 30 días = 240 días)
240/365 = 0.6575 años
Solución:
VA = 5,000; i = 0.097; n = 0.6575; VF = ?
2º Aplicamos la fórmula (2) y Excel:
[2] VF = 5,000 *[1 + (0.097*0.6575)] = UM 5,318.89
Respuesta:
El empresario tendrá al final de los 8 meses UM 5,318.89
5. Descuentos
Es una operación de crédito llevada a cabo principalmente en instituciones bancarias y consiste en que éstas adquieren letras de cambio, pagarés, facturas, etc. de cuyo valor nominal descuentan una suma equivalente a los intereses que devengaría el documento entre la fecha recibida y la fecha de vencimiento. Anticipan el valor actual del documento.
La fórmula para el cálculo del descuento es:
Donde:
D = descuento
VF o VN = valor del pagaré o documento (monto), valor nominal
d = tasa de descuento
n = número de períodos hasta el vencimiento del pagaré
Otras fórmulas del descuento:
Despejando de la fórmula [6] tenemos:
[7] VN = VA + D
[8] VA = VN - D
[9] D = VN - VA
Sustituimos el valor de VF en la formula [6]:
D =[VA + D]n*d
D =VA*b*d + D*n*d y pasando el segundo termino tenemos D – D*n*d = VA*n*d
EJERCICIO 7 (Pagaré)
Tenemos un pagaré por UM 185,000, girado el 15/06/08 y con vencimiento al 15/08/08, con una tasa de descuento de 50% anual. Determinar el descuento y el valor actual del documento.
Solución:
VN = 185,000; n = 2 meses; d = (0.50/12) = 0.0417; D = ?; VA = ?
Respuesta:
El descuento es de UM 15,416.64 y el valor actual del documento es de UM 169,583.33.
EJERCICIO 8 (Descuento de pagaré)
Una empresa descuenta un pagaré y recibe UM 20,000. Si la tasa de descuento es del 66% anual y el vencimiento es en tres meses después del descuento. ¿Cuál era el valor nominal del documento en la fecha de vencimiento?
Solución:
VA = 20,000; d = (0.66/12) = 0.055; n = 3; VF = ?
[7] VF = 20,000 + 3,300 = UM 23,300
Respuesta:
El valor nominal (VF) del documento en la fecha de vencimiento es UM 23,300.
EJERCICIO 9 (Descuento de letra)
Una empresa descuenta una letra por la cual recibe UM 2,520. Si la tasa de descuento es de 66% y el valor nominal de UM 2,950. ¿Cuánto tiempo faltaba para el vencimiento de la obligación?
Solución:
VN = 2,950; VA = 2,520; d = (0.66/12) = 0.055; D = ?
[9] D = 2,950 - 2,520 = UM 430.00
Despejando n de la fórmula (6) D = VN *n*i obtenemos:
Respuesta:
Faltaba para el vencimiento 2 meses y 20 días.
6. Valor del dinero en el tiempo
El tiempo (plazo) es fundamental a la hora de establecer el valor de un capital.
Una unidad monetaria hoy vale más que una unidad monetaria a ser recibida en el futuro. Una UM disponible hoy puede invertirse ganando una tasa de interés con un rendimiento mayor a una UM en el futuro. Las matemáticas del valor del dinero en el tiempo cuantifican el valor de una UM a través del tiempo. Esto, depende de la tasa de rentabilidad o tasa de interés que pueda lograrse en la inversión.
El valor del dinero en el tiempo tiene aplicaciones en muchas áreas de las
...