Historia de la Trigonometría
123456788765436 de Junio de 2014
5.727 Palabras (23 Páginas)367 Visitas
Historia de la Trigonometría
El origen de la palabra TRIGONOMETRÍA proviene del griego "trigonos" (triángulo) y "metros" (metria).
Los babilonios y los egipcios (hace más de 3000 años) fueron los primeros en utilizar los ángulos de un triángulo y las razones trigonométricas para efectuar medidas en agricultura y para construir pirámides. Posteriormente se desarrolló más con el estudio de la astronomía mediante la predicción de las rutas y posiciones de los cuerpos celestes y para mejorar la exactitud en la navegación y en el cálculo del tiempo y los calendarios.
El estudio de la trigonometría pasó después a Grecia, donde destaca el matemático y astrónomo Griego Hiparco de Nicea. Más tarde se difundió por India y Arabia donde era utilizada en la Astronomía. Desde Arabia se extendió por Europa, donde finalmente se separa de la Astronomía para convertirse en una rama independiente de las Matemáticas.
A finales del siglo VIII los astrónomos Árabes trabajaron con la función seno y a finales del siglo X ya habían completado la función seno y las otras cinco funciones. También descubrieron y demostraron teoremas fundamentales de la trigonometría.
A principios del siglo XVII, el matemático John Napier inventó los logaritmos y gracias a esto los cálculos trigonométricos recibieron un gran empuje.
A mediados del siglo XVII Newton encontró la serie para el sen x y series similares para el cos x y la tg x. Con la invención del cálculo las funciones trigonométricas fueron incorporadas al análisis, donde todavía hoy desempeñan un importante papel tanto en las matemáticas puras como en las aplicadas.
Por último, en el siglo XVIII, el matemático Leonhard Euler demostró que las propiedades de la trigonometría eran producto de la aritmética de los números complejos y además definió las funciones trigonométricas utilizando expresiones con exponenciales de números complejo
La trigonometría es una rama de las tantas ramas de matemáticas, se encarga de estudiar y analizar la relación entre los lados y los ángulos de los triángulos. Para esto recurre generalmente a las llamadas razones trigonométricas. El origen de la palabra trigonometría desciende del griego “trigonos” (triángulo) y “metros” (metria).
Hace unos 4000 años en Babilonia (antiguo reino localizado en la región de Mesopotamia) y Egipto se determinó y establecieron aproximaciones de medidas de ángulos y de longitudes de los lados de los triángulos rectángulos para ampliar y desarrollar medidas tanto en la agricultura como en la construcción de pirámides. Los egipcios fijaron la medida de los ángulos en grados, minutos y segundos. Además se utilizaba la trigonometría para el estudio de la astronomía. Antiguamente la astronomía se ocupaba de la observación y predicciones de los movimientos de los objetos visibles a simple vista y en el estudio de la predicción de las rutas y posiciones y perspectivas de los cuerpos en el espacio, para luego progresar y perfeccionar la exactitud en la navegación y el cálculo del tiempo así como los calendarios. La astronomía precolombina poseía calendarios muy puntuales y las pirámides de Egipto fueron construidas sobre patrones astronómicos muy exactos y puntuales.
Luego de Egipto y Babilonia, el estudio de la trigonometría se asentó en Grecia, donde podemos nombrar al matemático y astrónomo Griego Hiparco de Nicea, quien fue uno de los principales y más importantes desarrolladores de la Trigonometría. Este matemático construyó una tabla de cuerdas para solucionar triángulos. Comenzando con un ángulo de 71° y aproximándose hasta 180° con ampliaciones de 71°, la tabla facilitaba la longitud de la cuerda limitada por los lados del ángulo central ya que fragmentaba a una circunferencia de radio r. Hasta el momento no se conoce el valor que Hiparco utilizó para r. 300 años mas tarde, el astrónomo griego Tolomeo utilizó r = 60, ya que los griegos tomaron el sistema numeral (base 60) que era usado por los babilonios.
Durante varios siglos, la trigonometría de Tolomeo fue la introducción primordial para los astrónomos. El libro de astronomía, Almagesto, escrito por él, igualmente poseía una tabla de cuerdas junto con la explicación de su método para compilarla, presentando también el catálogo estelar más perfecto y completo de la antigüedad. El teorema de Menelao utilizado para resolver triángulos esféricos fue también obra de Tolomeo.
En India y Arabia la trigonometría era utilizada en la Astronomía. El primer uso de la función seno, aparece en el Shulba o Sulba Sutras escrito en India del siglo VIII al VI a. C. Se desarrollo entonces un sistema trigonométrico que estaba basado en la función seno en vez de cuerdas como los griegos. Esta función nueva función, era la longitud del lado opuesto a un ángulo en un triángulo rectángulo de hipotenusa. A finales del siglo X ya habían se habían completado la función seno y las otras cinco funciones trigonométricas.
En el siglo XII comienzan a aparecer en Europa traducciones de libros de matemáticas y astronomía árabes, hecho que lleva a la familiarización con la trigonometría. El primer trabajo significativo en esta materia en el continente Europeo fue escrito por el matemático y astrónomo alemán Johann Müller. Se le considerada fundador y un importante innovador en esta materia, puesto que detalla y crea varias herramientas de gran utilidad, así como importantes tratados como De triangulis y Epitome in Almagestum en el cual explica, analiza y muestra la obra de Tolomeo.
Durante el siglo XII el astrónomo alemán Georges Joachim, introdujo el concepto moderno de las funciones trigonométricas como proporcionales en vez de longitudes de algunas determinadas líneas. Ya en el siglo XVI el matemático francés François Vieté, incorpora en su tratado “Canon matemáticas” el triángulo polar en la trigonometría esférica.
A comienzos del siglo XVII, el matemático escocés John Napier descubrió los logaritmos que el llamó “números artificiales”. Esto fue trascendental en el desarrollo de la trigonometría.
A mediados del siglo XVII el físico, inventor, alquimista y matemático inglés, Isaac Newton descubre el cálculo diferencial e integral. También contribuyó en otras áreas de la matemática, por ejemplo desarrollando el teorema del binomio o las fórmulas de Newton-Cotes.
En el siglo XVIII, el físico y matemático suizo Leonhard Euler, explicó que las propiedades de la trigonometría eran consecuencia de la aritmética de los números complejos. Estudió además la notación actual de las funciones trigonométricas y se le atribuye el descubrimiento de la letra e como base del logaritmo natural, así como la unidad imaginaria que generalmente se denota con la letra i. Euler también popularizó El número pi ( π ).
Durante el siglo XX la trigonometría ha realizado muchos aportes en el estudio de los fenómenos de onda y oscilatorio, así como el comportamiento periódico, el cual se relaciona con las propiedades analíticas de las funciones trigonométricas. En astronomía se utiliza para medir distancias a estrellas próximas, para la medición de distancias entre puntos geográficos, y en sistemas de navegación satelital.
Importancia Trigonometria
La trigonometría es parte de la matemática que establece la relación entre los ángulos y los lados de un triángulo, siendo fundamental esta relación para la resolución de problemas relacionados al cálculo de las magnitudes y medidas de lados y ángulos de triángulos semejantes y también de polígonos, ya que todos los polígonos se pueden dividir en un número determinado de triángulos, por ser el triángulo polígono de menor número de lados.
Las relaciones establecidas entre estos elementos del triángulo determinan las 6 razones trigonométricas que básicamente se obtienen de un triángulo rectángulo, sin que esto signifique que no pueda aplicarse a cualquier tipo de triángulo o polígono.
La agrimensura y la navegación son prácticas que, desde sus orígenes, han requerido el cálculo de distancias cuya medición directa no resultaba posible; y otro tanto sucede en el ámbito de la astronomía. Para resolver este problema, los antiguos babilonios recurrieron ya a la trigonometría; es decir, a una serie de procedimientos que permiten poner en relación las medidas de los lados de un triángulo con las medidas de sus ángulos. La distancia desde un punto situado al pie de una montaña hasta su cima, por ejemplo, o desde una embarcación hasta un determinado punto de la costa, o la que separa dos astros, pueden resultar inaccesibles a la medición directa; en cambio, el ángulo que forma la visual dirigida a un accidente geográfico, o a un punto de la bóveda celeste, con otra visual fijada de antemano (como puede ser la dirigida según la horizontal), acostumbra ser fácil de medir mediante instrumentos relativamente sencillos que unidos con las técnicas de triangulación, por ejemplo, son usadas en astronomía para medir distancias a estrellas próximas, o también en la medición de distancias entre puntos geográficos, y en sistemas de navegación por satélites.
La trigonometría es la rama de las matemáticas que estudia las relaciones entre los ángulos y los lados de los triángulos. Para esto se vale de las razones trigonométricas, las cuales son utilizadas frecuentemente en cálculos técnicos.
En términos generales, la trigonometría es el estudio de las funciones seno, coseno; tangente, cotangente;
...