ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

Aplicacion De La La Radio En Ecuaciones


Enviado por   •  3 de Diciembre de 2012  •  1.821 Palabras (8 Páginas)  •  330 Visitas

Página 1 de 8

Aplicación

de ecuaciones en la radio

Alumno:

Vieytez Domínguez Hugo.

Matricula

210301890.

Introducción:

Este trabajo está diseñado para explicar cómo funciona un radio mediante las ecuaciones de segundo orden en este caso sería aplicaciones de segundo orden

Para las características de las ondas de radio, su clasificación y usos fuera del ámbito de la comunicación, véase Radiofrecuencia.

Para los aspectos técnicos básicos y usos de las transmisiones en la frecuencia de radio, véase Radiocomunicación.

Estación y torre de antena transmisora de radio, se ven dos parabólicas de enlaces satelitales.

Otra torre de radiotransmisión.

La radio (entendida como radiofonía o radiodifusión, términos no estrictamente sinónimos)1 es un medio de comunicación que se basa en el envío de señales de audio a través de ondas de radio, si bien el término se usa también para otras formas de envío de audio a distancia como la radio por Internet.

Descubrimiento de las ondas electromagnéticas de la radio

Las bases teóricas de la propagación de ondas electromagnéticas fueron descritas por primera vez por James Clerk Maxwell en un documento dirigido a la Royal Society (1873) titulado Una teoría dinámica del campo electromagnético, que describía sus trabajos entre los años 1861 y 1865: su teoría, básicamente, era que los campos eléctricos variables crean campos magnéticos variables, y viceversa, que los campos magnéticos variables crean campos eléctricos variables con lo que unos u otros crearán a su vez nuevos campos eléctricos o magnéticos variables que se propagarán por el espacio en forma de campos electromagnéticos variables sucesivos los cuales se alejarán en forma de ondas electromagnéticas de la fuente donde se originaron.

Heinrich Rudolf Hertz, en 1888, fue el primero en validar experimentalmente la teoría de Maxwell, al idear como "crear" artificialmente tales ondas electromagnéticas y como detectarlas y a continuación llevando a la práctica emisiones y recepciones de estas ondas y analizando sus características físicas demostrando que las ondas creadas artificialmente tenían todas las propiedades de las ondas electromagnéticas "teóricas" y descubriendo que las ecuaciones de las ondas electromagnéticas podían ser reformuladas en una ecuación diferencial parcial denominada ecuación de onda.

El dispositivo que diseñó para producir ondas electromagnéticas consistía en dos barras metálicas del mismo tamaño alineadas y muy próximas por uno de sus extremos y que terminaban en una bola metálica por el otro; sobre una de estas barras eran inyectados "paquetes de electrones" a muy alta tensión que a su vez eran extraídos de la otra barra; los intensos cambios en el número de electrones que esto provocaba en las barras daba origen a descargas de electrones de una a otra barra en forma de chispas a través del estrecho espacio que las separaba, descargas que se producían de una forma que se podría calificar de elástica u oscilante ya que tras una "inyección" de electrones en una barra se producían descargas alternadas de electrones de una a otra barra cada vez de menor intensidad hasta desaparecer al fin por las resistencias eléctricas.

Estos cambios alternantes en el número de electrones que tenía cada barra hacía que a lo largo de ellas se propagaran variaciones de la carga eléctrica lo que originaba campos eléctricos variables de signo opuesto en torno de ellas. Tales campos eléctricos variables daban origen a campos magnéticos variables y éstos a nuevos campos eléctricos variables con lo que se producían ondas electromagnéticas que se difundían desde esas barras.

Las "inyecciones" y "sustracciones" de "paquetes de electrones" se conseguían mediante intensos impulsos eléctricos provocados por una bobina de un gran número de espiras que tenía sus extremos unidos cada uno a una de las dos barras y que tenía otra bobina de un pequeño número de espiras concéntrica a ella. Esta segunda bobina recibía breves impulsos eléctricos en baja tensión que inducía a la bobina de gran número de espiras la cual los transformaba en impulsos de muy alta tensión.

El receptor era una barra metálica de forma circular y con sus dos extremos muy próximos uno de otro; la longitud de esta barra estaba calculada para que fuera resonante a los campos magnéticos variables originados en las barras emisoras; las corrientes de electrones provocadas en tal barra receptora por los campos magnéticos variables que captaba causaban pequeñas descargas de electrones entre sus extremos, descargas que eran visibles en forma de chispas.

Hertz dio un paso de gigante al afirmar y probar que las ondas electromagnéticas se propagan a una velocidad similar a la velocidad de la luz y que tenían las mismas características físicas que las ondas de luz, como las de reflejarse en superficies metálicas, desviarse por prismas, estar polarizadas, etc., sentando así las bases para el envío de señales de radio.

Como homenaje a Hertz por este descubrimiento, las ondas electromagnéticas pasaron a denominarse ondas hertzianas.

Aplicaciones de ED de segundo orden

Circuitos eléctricos (RADIO)

Desde hace más de un siglo, la humanidad ha utilizado en su beneficio la energía eléctrica. Actualmente usamos diferentes aparatos que la necesitan, baste recordar sólo los aparatos electrodomésticos que tenemos en nuestras casas para reconocer

...

Descargar como (para miembros actualizados)  txt (11 Kb)  
Leer 7 páginas más »
Disponible sólo en Clubensayos.com