ClubEnsayos.com - Ensayos de Calidad, Tareas y Monografias
Buscar

TEORIA GENERAL DE SISTEMAS (TGS)


Enviado por   •  8 de Mayo de 2014  •  1.801 Palabras (8 Páginas)  •  295 Visitas

Página 1 de 8

TEORIA GENERAL DE SISTEMAS (TGS)

1.- INTRODUCCION

El estudio de realidades complejas, en las cuales el todo es notoriamente más que la suma de las partes, obliga a ir más allá del método analítico tradicional basado en el estudio por separado de las diferentes partes de un objeto. Por el contrario, el enfoque sistémico pone en primer plano el estudio de las interacciones entre las partes y entre éstas y su entorno.

2.- QUE ES LA TGS ?

La teoría general de sistemas (TGS), teoría de sistemas o enfoque sistémico es un esfuerzo de estudio interdisciplinario que trata de encontrar las propiedades comunes a entidades llamadas sistemas. Éstos se presentan en todos los niveles de la realidad, pero que tradicionalmente son objetivos de disciplinas académicas diferentes. Su puesta en marcha se atribuye al biólogo austriaco Ludwig von Bertalanffy, quien acuñó la denominación a mediados del siglo XX.

3.- CARACTERISTICAS

Un sistema es un conjunto de objetos unidos por alguna forma de interacción o Interdependencia. Cualquier conjunto de partes unidas entre sí puede ser considerado un sistema, desde que las relaciones entre las partes y el comportamiento del todo sea el foco de atención. Un conjunto de partes que se atraen mutuamente (como el sistema solar), o un grupo de personas en una organización, una red industrial, un circuito eléctrico, un computador o un ser vivo pueden ser visualizados como sistemas.

Realmente, es difícil decir dónde comienza y dónde termina determinado sistema. Los límites (fronteras) entre el sistema y su ambiente admiten cierta arbitrariedad. El propio universo parece estar formado de múltiples sistema que se compenetran. Es posible pasar de un sistema a otro que lo abarca, como también pasar a una versión menor contenida en él.

Se pueden apreciar ciertas características:

a) Propósito u objetivo:

Todo sistema tiene uno o algunos propósitos u objetivos. Las unidades o elementos (u Objetos), como también las relaciones, definen una distribución que trata siempre de alcanzar un objetivo.

b) Globalismo o totalidad:

Todo sistema tiene una naturaleza orgánica, por la cual una acción que produzca cambio en una de las unidades del sistema, con mucha probabilidad producirá cambios en todas las otras unidades de éste. En otros términos, cualquier estimulación en cualquier unidad del sistema afectará todas las demás unidades, debido a la relación existente entre ellas. Existe una relación de causa y efecto entre las diferentes partes del sistema. Así, el Sistema sufre cambios y el ajuste sistemático es continuo. De los cambios y de los ajustes continuos del sistema se derivan dos fenómenos el de la entropía y el de la homeostasia.

c) Entropía:

Es la tendencia que los sistemas tienen al desgaste, a la desintegración, para el relajamiento de los estándares y para un aumento de la aleatoriedad. A medida que la entropía aumenta, los sistemas se descomponen en estados más simples. A medida que aumenta la información, disminuye la entropía, pues la información es la base de la configuración y del orden. Si por falta de comunicación o por ignorancia, los estándares de autoridad, las funciones, la jerarquía, etc. de una organización formal pasan a ser gradualmente abandonados, la entropía aumenta y la organización se va reduciendo a formas gradualmente más simples y rudimentarias de individuos y de grupos.

d) Homeostasis:

Es el equilibrio dinámico entre las partes del sistema. Los sistemas tienen una tendencia adaptarse con el fin de alcanzar un equilibrio interno frente a los cambios externos del medio ambiente.

La definición de un sistema depende del interés de la persona que pretenda analizarlo. Una organización, por ejemplo, podrá ser entendida como un sistema o subsistema, o más aun un supersistema, dependiendo del análisis que se quiera hacer: que el sistema tenga un grado de autonomía mayor que el subsistema y menor que el supersistema.

El sistema total es aquel representado por todos los componentes y relaciones necesarios para la realización de un objetivo, dado un cierto número de restricciones. El objetivo del sistema total define la finalidad para la cual fueron ordenados todos los componentes y relaciones del sistema, mientras que las restricciones del sistema son las limitaciones introducidas en su operación que definen los límites (fronteras) del sistema y posibilitan explicar las condiciones bajo las cuales debe operar. Los componentes necesarios para la operación de un sistema total son llamados subsistemas, los que, a su vez, están formados por la reunión de nuevo subsistemas más detallados. Así, tanto la jerarquía de los sistemas como el número de los subsistemas dependen de la complejidad intrínseca del sistema total.

4.- TIPOS DE SISTEMAS

En cuanto a su constitución, pueden ser físicos o abstractos:

• Sistemas físicos o concretos: compuestos por equipos, maquinaria, objetos y cosas reales. El hardware.

• Sistemas abstractos: compuestos por conceptos, planes, hipótesis e ideas. Muchas veces solo existen en el pensamiento de las personas. Es el software.

En cuanto a su naturaleza, pueden cerrados o abiertos:

• Sistemas cerrados: no presentan intercambio con el medio ambiente que los rodea, son herméticos a cualquier influencia ambiental. No reciben ningún recurso externo y nada producen que sea enviado hacia fuera. En rigor, no existen sistemas cerrados. Se da el nombre de sistema cerrado a aquellos sistemas cuyo comportamiento es determinístico y programado y que opera con muy pequeño intercambio de energía y materia con el ambiente. Se aplica el término a los sistemas completamente estructurados, donde los elementos y relaciones se combinan de una manera peculiar y rígida produciendo una salida invariable, como las máquinas.

• Sistemas abiertos: presentan intercambio con el ambiente, a través de entradas y salidas. Intercambian energía y materia con el ambiente. Son adaptativos para sobrevivir. Su estructura es óptima cuando el conjunto de elementos del sistema se organiza, aproximándose a una operación adaptativa. La adaptabilidad es un continuo proceso de aprendizaje y de auto-organización.

Los

...

Descargar como (para miembros actualizados)  txt (12 Kb)  
Leer 7 páginas más »
Disponible sólo en Clubensayos.com