Función logarítmica
francisycarlos26 de Septiembre de 2011
3.452 Palabras (14 Páginas)766 Visitas
Función logarítmica:
Función: En matemáticas, una función, aplicación o mapeo es una relación entre dos conjuntos de objetos cualesquiera, que a cada elemento del primer conjunto le asigna un único objeto en el segundo. Por ejemplo, cada número entero posee un único cuadrado, que resulta ser un número natural (incluyendo el cero):
Logaritmo de un número —en una base determinada— es el exponente al cual hay que elevar la base para obtener dicho número. Por ejemplo, el logaritmo de 1000 en base 10 es 3, porque 1000 es igual a 10 a la potencia 3: 1000 = 103 = 10×10×10.
De la misma manera que la operación opuesta de la suma es la resta y la de lamultiplicación la división, la logaritmación es la operación inversa a la exponenciación.
Función logarítmica:
La geología como ciencia requiere del planteamiento de ecuaciones logarítmicas para el cálculo de la intensidad de un evento, tal como es el caso de un sismo. La magnitud R de un terremoto está definida como R= Log (A/A0) en la escala de Richter, donde A es la intensidad y A0 es una constante. (A es la amplitud de un sismógrafo estándar, que está a 100 kilómetros del epicentro del terremoto).
Los astrónomos para determinar una magnitud estelar de una estrella o planeta utilizan ciertos cálculos de carácter logarítmico. La ecuación logarítmica les permite determinar la brillantez y la magnitud.
En la física la función logarítmica tiene muchas aplicaciones entre las cuales se puede mencionar el cálculo del volumen "L" en decibeles de un sólido, para el cual se emplea la siguiente ecuación L= 10 . Log (I/I0) , donde I es la intensidad del sonido (la energía cayendo en una unidad de área por segundo), I0 es la intensidad de sonido más baja que el oído humano puede oír (llamado umbral auditivo). Una conversación en voz alta tiene un ruidode fondo de 65 decibeles.
El logaritmo en base b de un número a es igual a N, si la base b elevada a N da como resultado a.
Logb a = N si bN = a
Notación logarítmica
Notación exponencial
Logaritmos:
Dado un número real a positivo, no nulo y distinto de 1, (a > 0; a ¹ 0; a ¹ 1), y un número N positivo y no nulo (N > 0; N ¹ 0), se llama logaritmo en base a de N al exponente x al que hay que elevar dicha base para obtener el número.
Para indicar que x es el logaritmo en base a de N se escribe:
logaN = x
y se lee «logaritmo en base a de N es igual a x».
Por lo tanto, logaN = x (notación logarítmica) equivale a decir que ax = N
(notación exponencial).
Notación logarítmica Notación exponencial:
Consecuencias de la definición de logaritmo
1. El logaritmo de 1, en cualquier base, es 0: loga 1 = 0, ya que a0 = 1
2. El logaritmo de un número igual a la base es 1: loga a = 1, ya que a1 = a
3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: loga am = m, ya que am = am
4. No existe el logaritmo en cualquier base de un número negativo o cero.
5. El logaritmo de un número N mayor que cero y menor que 1, estrictamente, 0<N<1, es negativo si la base a del logaritmo es a>1.
6. El logaritmo de un número N mayor que cero y menor que 1, estrictamente, 0<N<1, es positivo si la base a del logaritmo es a<1.
7. El logaritmo de un número N>1 es positivo si la base es a>1.
Así, log3 9 = 2; ya que 32 = 9
8. El logaritmo de un número N>1 es negativo si la base es a<1.
Propiedades de los logaritmos
1. Logaritmo de un producto
El logaritmo de un producto de dos números es igual a la suma de los logaritmos de cada uno de ellos.
loga(X • Y)= loga X + loga Y
Demostración:
Sea loga X = x; esto significa que ax = X.
Sea loga Y = y; esto significa que ay = Y.
loga(X • Y)= loga (ax • ay) = loga ax+y = x + y = loga X + loga Y
Este resultado se puede generalizar para más de dos factores.
Si X1, X2, X3, ..., Xn son n números reales, positivos y no nulos,
loga(X1 • X2 ... Xn)= loga X1 + loga X2 + ... + loga Xn
Logaritmo de un cociente:
El logaritmo de un cociente de dos números es igual al logaritmo del numerador menos el logaritmo del denominador.
Demostración:
Sea loga X = x; esto significa que ax = X
Sea loga Y = y; esto significa que ay = Y
Logaritmo de una potencia:
El logaritmo de una potencia es igual al exponente multiplicado por el logaritmo de la base de la potencia.
loga Xn = n loga X
Demostración:
Sea loga X = x; esto significa que ax = X.
loga Xn = loga (ax)n = loga anx = nx = n loga X
Logaritmo de una raíz:
El logaritmo de una raíz es igual al logaritmo del radicando dividido entre el índice de la raíz.
Demostración:
Este es un caso particular del apartado anterior, logaritmo de una potencia.
Obsérvese que las propiedades anteriores se refieren al logaritmo de un producto, un cociente, una potencia y una raíz, pero nada se ha dicho sobre el logaritmo de una suma o una resta. El logaritmo de una suma o de una resta no admite desarrollo.
Ejercicios de función logarítmica:
sabiendo que log10 2 = 0,301030 y log10 3 = 0,477121, calcular log10 6, log10 8,
Resolución:
Para obtener los logaritmos pedidos a partir del logaritmo de 2 y de 3, hay que
• log10 6 = log10 (2•3) = log10 2 + log10 3 = 0,301030 + 0,477121 = 0,778151
• log10 8 = log10 23 = 3 log10 2 = 3 • 0,301030 = 0,903090
Función exponencial:
Esta función se aplica a la química y física. En algunos elementos radioactivos son de tal naturaleza que su cantidad disminuye con respecto al tiempo, se cumple la ley exponencial y se dice que el elemento decrece o decae.
En la química, el PH es la concentración de iones de una sustancia expresada en moles por litro. El PH delH+, donde H+de una sustancia se define como : H = -Log agua destilada es 7. Una sustancia con un PH menor que 7, se dice que es ácida, mientras que su PH es mayor que 7, se dice que es base. Los ambientalistas miden constantemente el PH del agua de lluvia debido al efecto dañino de la "lluvia ácida" que se origina por las emisiones de dióxido de azufre de las fábricas y plantas eléctricas que trabajan con carbón.
Otras de la aplicación de las funciones exponencial fue con el descubrimiento del Polonio (elemento radioactivo) descubierto por Marie Curie en 1 898 decae exponencialmente de acuerdo a la función: m = m0 e-0,005t, donde m0 es la masa inicial del Polonio, m es la masa al cabo de un tiempo y t es el tiempo en días.
Igualmente es conocida formalmente como la función real ex, donde e es el número, aproximadamente 2.71828.... Esta función tiene por dominio de definición el conjunto de los números reales, y tiene la particularidad de que su derivada es la misma función. Se denota equivalentemente como f(x)=ex o exp(x), donde e es la base de los logaritmos naturales y corresponde a la función inversa del logaritmo natural.
En términos mucho más generales, una función real E(x) se dice que es del tipo exponencial en base a si tiene la forma
Siendo números reales, . Así pues, se obtiene un abanico de exponenciales, todas ellas similares, que dependen de la base a que utilicen.
Ejemplos de funciones exponenciales
1. La función y = 2x es una función exponencial de base 2. Algunos de los valores
Propiedades de la función exponencial:
y = ax
1a. Para x = 0, la función toma el valor 1: f(0) = a0 = 1
2a. Para x = 1, la función toma el valor a: f(1) = a1 = a
3a. La función es positiva para cualquier valor de x: f(x )>0.
Esto es debido a que la base de la potencia, a, es positiva, y cualquier potencia de base positiva da como resultado un número positivo.
4a . Si la base de la potencia es mayor que 1, a>1, la función es creciente.
5a. Si la base de la potencia es menor que 1, a<1, la función es decreciente.
Derivada:
La importancia de las funciones exponenciales en matemática y ciencias radica principalmente de las propiedades de su derivada. En particular,
Es decir, ex es su propia derivada. Es la única función con esa propiedad (sin tomar en cuenta la multiplicación de la función exponencial por una constante). Otras formas de expresar lo anterior:
La pendiente del gráfico en cualquier punto es la altura de la función en ese punto.
La razón de aumento de la función en x es igual al valor de la función en x.
La función es solución de la ecuación diferencial y' = y.
Si la base de la exponencial no es el número e, sino otro número real arbitrario a mayor que 0, entonces la derivada de ésta es:
donde la función ln denota el logaritmo natural.
Representación gráfica de la función exponencial:
Función exponencial
Se llama así a la función y= f(x) = ax, cuando a>0, es decir una potencia donde la variable independiente
...