La fórmula cuadrática . Objetivos de aprendizaje
alvarodiazherTarea16 de Mayo de 2019
4.125 Palabras (17 Páginas)194 Visitas
La fórmula cuadrática
Objetivos de aprendizaje
∙ Escribir una ecuación cuadrática en su forma estándar identificando los valores de a, b y c en la forma estándar de una ecuación cuadrática.
∙ Usar la fórmula cuadrática para encontrar todas las soluciones reales.
∙ Usar la fórmula cuadrática para encontrar todas las soluciones complejas.
∙ Calcular el discriminante e indicar el número y tipo de soluciones.
∙ Resolver problemas de aplicación que requieren el uso de la fórmula cuadrática.
Introducción
Puedes resolver una ecuación cuadrática completando el cuadrado, reescribiendo parte de la ecuación como un trinomio cuadrado perfecto. Si completas el cuadrado de una ecuación genérica ax2 + bx + c = 0 y luego resuelves x, encuentras que [pic 1]. A esta ecuación se le conoce como ecuación cuadrática.
Esta fórmula es muy útil para resolver ecuaciones cuadráticas que son difíciles o imposibles de factorizar y usarla puede ser más rápido que completar el cuadrado. La fórmula cuadrática puede usarse para resolver cualquier ecuación de la forma ax2 + bx + c = 0.
Forma estándar
La forma ax2 + bx + c = 0 se llama la forma estándar de una ecuación cuadrática. Antes de resolver una ecuación cuadrática usando la fórmula cuadrática, es vital estar seguros de que la ecuación tenga esta forma. Si no, podríamos usar los valores incorrectos de a, b, o c y la fórmula dará soluciones incorrectas.
Ejemplo | |||||||||||||||||||||||
Problema | Reescribe la ecuación 3x + 2x2 + 4 = 5 en su forma estándar e identifica a, b y c. | ||||||||||||||||||||||
| 3x + 2x2 + 4 = 5 3x + 2x2 + 4 – 5 = 5 – 5 | Primero asegúrate de que el lado derecho de la ecuación sea 0. En este caso, todo lo que tienes que hacer es restar 5 de ambos lados. | |||||||||||||||||||||
| 3x + 2x2 – 1 = 0 2x2 + 3x – 1 = 0 | Simplifica y escribe los términos con el exponente en la variable en orden descendiente. | |||||||||||||||||||||
|
a = 2, b = 3, c = −1
| Ahora que la ecuación está en su forma estándar, puedes leer los valores de a, b y c de los coeficientes y la constante. Observa que como la constante 1 se resta, c debe ser negativa. | |||||||||||||||||||||
Respuesta | 2x2 + 3x – 1 = 0; a = 2, b = 3, c = −1 |
Ejemplo | |||||||||||||||||||||||
Problema | Reescribe la ecuación 2(x + 3)2 – 5x = 6 en su forma estándar e identifica a, b y c. | ||||||||||||||||||||||
| 2(x + 3)2 – 5x = 6 2(x + 3)2 – 5x – 6 = 6 – 6 | Primero asegúrate de que el lado derecho de la ecuación sea 0. | |||||||||||||||||||||
| 2(x2 + 6x + 9) – 5x – 6 = 0 2x2 + 12x + 18 – 5x – 6 = 0 2x2 + 12x – 5x + 18 – 6 = 0 2x2 + 7x + 12 = 0 | Expande el binomio cuadrado, luego simplifica combinando términos semejantes.
Asegúrate de escribir los términos con el exponente en la variable en orden descendiente. | |||||||||||||||||||||
|
a = 2, b = 7, c = 12
| Ahora que la ecuación está en su forma estándar, puedes leer los valores de a, b y c de los coeficientes y la constante. | |||||||||||||||||||||
Respuesta | 2x2 + 7x + 12 = 0; a = 2, b = 7, c = 12 |
Identifica los valores de a, b y c en su forma estándar de la ecuación 3x + x2 = 6.
A) a = 3, b = 1, c = 6 B) a = 1, b = 3, c = 6 C) a = 1, b = 3, c = −6 D) a = 3, b = 1, c = −6
Mostrar/Ocultar Respuesta
|
Derivando la fórmula cuadrática
Completemos el cuadrado en la ecuación general para ver exactamente cómo se produce la fórmula cuadrática. Recuerda el proceso de completar el cuadrado.
∙ Empieza con una ecuación de la forma x2 + bx + c = 0.
∙ Reescribe la ecuación de modo que x2 + bx quede despejado a un lado.
∙ Completa el cuadrado sumando [pic 2]a ambos lados.
∙ Reescribe el trinomio cuadrado perfecto como el cuadrado de un binomio.
∙ Usa la propiedad de la raíz cuadrada y resuelve x.
¿Puedes completar el cuadrado en la ecuación cuadrática general ax2 + bx + c = 0? Inténtalo tú antes de continuar con el ejemplo siguiente. Pista: Observa que en la ecuación general, el coeficiente de x2 no es igual a 1. Puedes dividir la ecuación entre a, lo que hace las expresiones un poco complicadas, pero si tienes cuidado, puede salir bien y al final, ¡tendrás la fórmula cuadrática!
...