Logica Matematica
cesarrc9518 de Septiembre de 2014
766 Palabras (4 Páginas)265 Visitas
A partir de la segunda mitad del siglo XIX, la lógica sería revolucionada profundamente. En 1847, George Boole publicó un breve tratado titulado El análisis matemático de la lógica, y en 1854 otro más importante titulado Las leyes del pensamiento. La idea de Boole fue construir a la lógica como un cálculo en el que los valores de verdad se representan mediante el 0 (falsedad) y el 1 (verdad), y a los que se les aplican operaciones matemáticas como la suma y la multiplicación.
La verdadera revolución de la lógica vino de la mano de Gottlob Frege, quien frecuentemente es considerado como el lógico más importante de la historia, junto con Aristóteles. En su trabajo de 1879, la Conceptografía, Frege ofrece por primera vez un sistema completo de lógica de predicados y cálculo proposicional.
El siglo XX sería uno de enormes desarrollos en lógica. A partir del siglo XX, la lógica pasó a estudiarse por su interés intrínseco, y no sólo por sus virtudes como propedéutica, por lo que estudió a niveles mucho más abstractos. Además de la lógica proposicional y la lógica de predicados, en este mismo siglo se vio el desarrollo de muchos otros sistemas lógicos; entre los que destacan las muchas lógicas modales. Y es así que la lógica matemática es una parte de la lógica y las matemáticas, que consiste en el estudio matemático de la lógica y en la aplicación de este estudio a otras áreas de las matemáticas. La lógica matemática tiene estrechas conexiones con las ciencias de la computación y la lógica filosófica.
La lógica matemática estudia los sistemas formales en relación con el modo en el que codifican o definen nociones intuitivas de objetos matemáticos como conjuntos, números, demostraciones y algoritmos, utilizando un lenguaje formal.
La lógica matemática suele dividirse en cuatro subcampos: teoría de modelos, teoría de la demostración, teoría de conjuntos y teoría de la recursión. La investigación en lógica matemática ha jugado un papel fundamental en el estudio de los fundamentos de las matemáticas. Actualmente se usan indiferentemente como sinónimos las expresiones: lógica simbólica (o logística), lógica matemática, lógica teorética y lógica formal
Debe señalarse que la lógica matemática se ocupa de sistemas formales que pueden no ser equivalentes en todos sus aspectos, por lo que la lógica matemática no es método de descubrir verdades del mundo físico real, sino sólo una fuente posible de modelos lógicos aplicables a teorías científicas, muy especialmente a la matemática convencional.
Sistemas lógicos
La lógica matemática se interesa por tres tipos de aspectos de los sistemas lógicos:
• La sintaxis de las lenguajes formales, es decir, las reglas de formación de símbolos interpretables construidos a partir de un determinado alfabeto, y las reglas de inferencia. En concreto el conjunto de teoremas deducibles de un conjunto de axiomas.
• La semántica de los lenguajes formales, es decir, los significados atribuibles a un conjunto de signos, así como el valor de verdad atribuible a algunas de las proposiciones. En general las expresiones de un sistema formal interpretadas en un modelo son ciertas o falsas, por lo que un conjunto de proposiciones que admite un modelo es siempre consistente.
• Los aspectos mitológicos de las lenguas formales, como por ejemplo la completitud semántica, la consistencia, la compacidad o la existencia de modelos de cierto tipo, etc.
Los diferentes tipos de sistemas lógicos pueden ser clasificados en:
• Lógica proposicional (Lógica de orden cero): En ella existe símbolos para variables proposicionales (que pueden ser interpretados informalmente como enunciados que pueden ser ciertos o falsos) además de símbolos para diversas conectivas. Estas conectivas permiten formar expresiones complejas a partir de
...