Variable Aleatoria
197380822 de Mayo de 2013
11.411 Palabras (46 Páginas)468 Visitas
Variable Aleatoria
Tratamiento de Variables Aleatorias
Tipos de pruebas estadísticas de hipótesis
Chi-cuadrado
Pruebas no paramétricas
Distribuciones de Probabilidad
Distribución de probabilidad continua
Conclusiones
Bibliografía
Anexos
Introducción
Una variable aleatoria es un valor numérico que corresponde al resultado de un experimento aleatorio, como el número de caras que se obtienen al lanzar 4 veces una moneda, el número de lanzamientos de un dado hasta que aparece el seis, el número de llamadas que se reciben en un teléfono en una hora, el tiempo de espera a que llegue un autobús.
Las variables aleatorias, como las estadísticas, pueden ser discretas o continuas.
Las variables aleatorias permiten definir la probabilidad como una función numérica (de variable real) en lugar de como una función de un conjunto dado.
Se dice que una variable aleatoria sigue una distribución uniforme si la función de densidad es constante en el intervalo en el que se encuentran todos los valores de la variable. La función de densidad o ley de probabilidad viene dada por:
Para ver la fórmula seleccione la opción "Descargar" del menú superior
Las distribuciones de probabilidad están relacionadas con las distribuciones de frecuencias. Una distribución de frecuencias teórica es una distribución de probabilidades que describe la forma en que se espera que varíen los resultados. Debido a que estas distribuciones tratan sobre expectativas de que algo suceda, resultan ser modelos útiles para hacer inferencias y para tomar decisiones en condiciones de incertidumbre.
Una distribución de frecuencias es un listado de las frecuencias observadas de todos los resultados de un experimento que se presentaron realmente cuando se efectuó el experimento, mientras que una distribución de probabilidad es un listado de las probabilidades de todos los posibles resultados que podrían obtenerse si el experimento se lleva a cabo.
Las distribuciones de probabilidad pueden basarse en consideraciones teóricas o en una estimación subjetiva de la posibilidad. Se pueden basar también en la experiencia.
A continuación trataremos mas extensamente los conceptos de Variable Aleatoria, Valor Esperado, Pruebas Paramétricas y No-Paramétricas, Distribuciones de Probabilidad, Distribuciones Discretas y Continuas y Distribuciones Simétricas y Distribuciones Sesgadas.
Variable Aleatoria
Se denomina variable aleatoria, a una variable X que puede tomar un conjunto de valores {x0, x1, x2, ... xn-1}, con probabilidades {p0, p1, p2, ... pn-1}. Por ejemplo, en la experiencia de lanzar monedas, los posibles resultados son {cara, cruz}, y sus probabilidades son {1/2, 1/2}. En la experiencia de lanzar dados, los resultados posibles son {1, 2, 3, 4, 5, 6} y sus probabilidades respectivas son {1/6, 1/6, 1/6, 1/6, 1/6, 1/6}.
Realicemos ahora la experiencia de hacer girar una ruleta y apuntar el número del sector que coincide con la flecha. En la ruleta de la izquierda de la figura los resultados posibles son {0, 1, 2, 3, 4, 5, 6, 7}, y la probabilidad de cada resultado es 1/8. En la ruleta de la derecha de la figura los posibles resultados son {0, 1, 2, 3}, y las probabilidades respectivas {1/4, 1/2, 1/8, 1/8}, proporcionales al ángulo del sector.
Para ver la fórmula seleccione la opción "Descargar" del menú superior
En los tres primeros ejemplos, la variable aleatoria X se dice que está uniformemente distribuida, ya que todos los resultados tienen la misma probabilidad. Sin embargo, en el último ejemplo, la variable aleatoria X, no está uniformemente distribuida.
El problema crucial de la aplicación de los métodos de Montecarlo es hallar los valores de una variable aleatoria (discreta o continua) con una distribución de probabilidad dada por la función p(x) a partir de los valores de una variable aleatoria uniformemente distribuida en el intervalo [0, 1), proporcionada por el ordenador o por una rutina incorporada al programa.
Para simular un proceso físico, o hallar la solución de un problema matemático es necesario usar gran cantidad de números aleatorios. El método mecánico de la ruleta sería muy lento, además cualquier aparato físico real genera variables aleatorias cuyas distribuciones difieren, al menos ligeramente de la distribución uniforme ideal. También, se puede hacer uso de tablas de cifras aleatorias uniformemente distribuidas, comprobadas minuciosamente en base a pruebas estadísticas especiales. Se emplean solamente cuando los cálculos correspondientes a la aplicación del método de Montecarlo se realiza a mano, lo que en estos tiempos resulta inimaginable. En la práctica, resulta más conveniente emplear los denominados números pseudoaleatorios, se trata de números que se obtienen a partir de un número denominado semilla, y la aplicación reiterada de una fórmula, obteniéndose una secuencia {x0, x1, x2, ... xn} de números que imitan los valores de una variable uniformemente distribuida en el intervalo [0, 1).
Se dice que una función
Para ver la fórmula seleccione la opción "Descargar" del menú superior
es una variable aleatoria si la "suerte" de realización de sus posibles valores puede establecerse con ayuda de los resultados de la experiencia aleatoria en estudio, cuyo espacio muestral es Ω . Se trata, en definitiva, de una funciσn que asigna un valor numιrico a cada uno de los resultados de una experiencia aleatoria.
En estadística y teoría de probabilidad una variable aleatoria se define como el resultado numérico de un experimento aleatorio. Matemático es una mapa
Para ver la fórmula seleccione la opción "Descargar" del menú superior
que da un valor numérico a cada suceso en el espacio Ω de los resultados posibles del experimento.
Se distinguen entre:
variables aleatorias discretas y
variables aleatorias continuas.
Dado una variable aleatoria X se pueden calcular estimadores estadísticos diferentes como la media (Media aritmética, Media geométrica, Media ponderada) y valor esperado y varianza de la distribución de probabilidad de X.
Se puede pensar en una variable aleatoria como un valor o una magnitud que cambia de una presentación a otra, sin seguir una secuencia predecible. Los valores de una variable aleatoria son los valores numéricos correspondientes a cada posible resultado de un experimento aleatorio.
La distribución de probabilidad de una variable aleatoria proporciona una probabilidad para cada valor posible, y estas probabilidades deben sumar 1.
Valor esperado de una variable aleatoria
El valor esperado es una idea fundamental en el estudio de las distribuciones de probabilidad.
Para obtener el valor esperado de una variable aleatoria discreta, se multiplica cada valor que la variable puede tomar por la probabilidad de presentación de ese valor y luego se suman esos productos. Es un promedio pesado de los resultados que se esperan en el futuro. El valor esperado pesa cada resultado posible con respecto a la frecuencia con que se espera se que presente. En consecuencia, las presentaciones más comunes tienen asignadas un peso mayor que las menos comunes.
El valor esperado también puede ser obtenido a partir de estimaciones subjetivas. En ese caso, el valor esperado no es más que la representación de las convicciones personales acerca del resultado posible.
En muchas situaciones, encontraremos que es más conveniente, en términos de los cálculos que se deben hacer, representar la distribución de probabilidad de una variable aleatoria de una manera algebraica. Al hacer esto, podemos llevar a cabo cálculos de probabilidad mediante la sustitución de valores numéricos directamente en una fórmula algebraica.
Sugerencia:
El valor esperado de una variable aleatoria discreta es un promedio pesado del valor de cada resultado posible multiplicado por la probabilidad de dicho resultado. Aunque existen muchos valores diferentes posibles que la variable aleatoria puede tomar, el valor esperado es sólo un número.
Tratamiento de Variables Aleatorias
Variables aleatorias discretas.
Variable que toma un número finito o infinito de valores numerables. Variable aleatoria que puede tomar sólo un número limitado de valores sean x1, x2, x3, ... xn los distintos valores que puede tomar la variable aleatoria.
Y p(x1), p(x2),... p(xn) su probabilidad.
Los pares de valores (xj, p(xj)) constituyen la distribución de probabilidades de la variable aleatoria.
p(x) se denomina función de probabilidad, y debe cumplir con las siguientes propiedades:
0 < p(xj) < 1 (p(x) es una probabilidad, y por lo tanto debe tomar valores entre 0 y 1).
å p(xj) = 1 (la suma de probabilidades repartidas entre todos los valores de la variable debe ser igual a 1).
De la misma manera que calculamos frecuencias acumuladas, podemos acumular probabilidades, obteniendo la función de distribución de probabilidades:
F(x) = å p(xj)
Esta función representa la probabilidad de que la variable aleatoria sea menor
...