PROCESOS ESTOCASTICOS- SEMINARIO 3
Jared TávaraTarea14 de Febrero de 2021
1.693 Palabras (7 Páginas)108 Visitas
UNIVERSIDAD NACIONAL DE INGENIERÍA Ciclo Académico: 2020-02 FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Fecha: 01-12-2020 DEPARTAMENTOS ACADÉMICOS Duración: 2h [pic 1][pic 2]
CURSO:[pic 3]
PROCESOS ESTOCASTICOS- SEMINARIO 3
COD. CURSO: BMA12M
- Sea X(t) un proceso estocástico wss e
Y(t) = X(t)cos(ω0t + θ), con
ω0 constante y
θ U [−π ;π ] independiente de X(t). Demostrar que Y(t) es un proceso estocástico wss.
Solución
- Calculo de la esperanza de Y(t)
E[Y(t)] = E[X(t)cos(ω0t + θ)] = E[X(t)]⋅E[cos(ω0t + θ)][pic 4]
cte
Cálculo de E[cos(ω0t + θ)]
π
1 1 π
E[cos(ω0t + θ)] =
∫ cos(ω0t + θ) ⋅ 2π ⋅ dθ = 2π ∫ cos(ω0t + θ) ⋅ d(ω0t + θ)
−π −π[pic 5][pic 6]
= [sen(ω0t + θ)] π = sen(ω0t + π) − sen(ω0t − π) = −sen(ω0t) + sen(ω0t) = 0
−π
E[Y(t)] = E[X(t)cos(ω0t + θ)] = E[X(t)]⋅(0) = 0
La esperanza de Y(t) es constante
- Calculo de la autocorrelación
RYY (t;t + τ) = E[Y(t)Y(t + τ)] = E⎡⎣X(t)cos(ω0t + θ)X(t + τ)cos(ω0(t + τ) + θ)⎤⎦
⎡ ⎤
RYY (t;t + τ) = E[X(t)X(t + τ)]⎢cos(ω0t + θ)cos(ω0(t + τ) + θ)⎥
⎢
RXX (τ) ⎢⎣
⎥
β α ⎥⎦
Se sabe: cos α ⋅ cosβ = 1 [cos(α− β) + cos(α+ β)] , α = ω0t + ω0τ +θ ,[pic 7][pic 8]
⎡ ⎤
= RXX(τ) ⋅ 1 ⋅E ⎢cos(ω0τ) + cos(2ω0t + ω0τ + 2θ)⎥
[pic 9]
β = ω0t +θ
2 ⎢
⎥
⎢ α−β α+β ⎥⎦
= RXX(τ) E⎡⎣cos(ω0τ)⎤⎦ + RXX(τ) E⎡⎣cos(2ω0t + ω0τ + 2θ)⎤⎦[pic 10][pic 11][pic 12]
= RXX(τ) ⋅ cos(ω0τ) + RXX(τ) E⎡⎣cos(2ω0t + ω0τ + 2θ)⎤⎦[pic 13][pic 14][pic 15]
Calculo de E⎡⎣cos(2ω0t + ω0τ+ 2θ)⎤⎦
E⎡⎣cos(2ω0t + ω0τ+ 2θ)⎤⎦ = ∫2π cos(2ω0t + ω0τ+ 2θ) 1 dθ
0 2π
= 1 ∫2π cos(2ω0t + ω0τ+ 2θ)d(2ω0t + ω0τ+ 2θ) = 1 ⎡⎣sen(2ω0t + ω0τ+ 2θ)⎤⎦ 2π
4π 0 4π 0
...