Lógica . La Proposición
Paulo NavaResumen13 de Abril de 2023
1.589 Palabras (7 Páginas)72 Visitas
[pic 1]
ESTUDIOS GENERALES LETRAS[pic 2]
Profesora: María Luisa Castillo Zárate
LÓGICA
La Proposición
como elemento básico del Lenguaje lógico 6
- Es la información, significado, o idea que una oración afirmativa presenta; entendiéndose por oración afirmativa, (llamada también declarativa, enunciativa, apofántica, asertórica, aseverativa, etc.), aquella que puede ser calificada de verdadera o falsa.
- Presenta una relación de sinonimia: es decir
[pic 3]
- no cambia con el idioma
- no cambia con la estructura gramatical.X
- La proposición es una entidad lógica que exige como requisitos el que sea:
- Susceptible de calificarse de V o F.
- No genere contradicción.
- Respete los niveles del lenguaje
Oraciones aseverativas ≠ Proposiciones | |
o Cambian con el idioma y estructura. Ejemplo: Los enemigos han sido superados Hostes superati sunt Es falso que los enemigos no hayan sido superados [pic 4] 3 oraciones |
o No cambian ni con el idioma ni con la estructura. Ejemplo: Los enemigos han sido superados Hostes superati sunt Es falso que los enemigos no hayan sido superados [pic 5] 1 proposición |
EJERCICIO 1: ¿Cuántas proposiciones contiene la siguiente lista?
1. | Los niños son aliados naturales de los abuelos. | |
2. | Escoger una vida implica renunciar a otra. | |
3. | Mahoma es el profeta del islam. | |
4. | Una nueva Lima se ha levantado junto a una Lima tradicional | |
5 | Buenos días, mi amigo | |
6. | El islam tiene solamente un gran profeta. | |
7. | Escoger una viuda implica renunciar a otra. | |
8. | Las corridas de toros deberían prohibirse | |
9. | Abuelos y niños son aliados naturales. | |
10. | Al lado de una Lima tradicional se ha levantado una nueva Lima | |
11. | La prohibición debía alcanzar a las corridas de toros | |
12. | Bonjour mon ami. | |
EJERCICIO 2: ¿Cuáles son proposiciones?
1. | ¿Puede el trabajo arduo ser motivo de placer? | |
2. | El diálogo siempre es lo mejor para la solución de conflictos. | |
3. | No tomarás el nombre de Dios en vano. | |
4. | El nacimiento de las artes marciales | |
5. | Nada es más aterrador que una guerra y sus héroes. | |
6. | “Ideología” y “palabrería” se confunden continuamente. | |
7. | Donde las calles no tienen nombre. | |
8. | Alcanzar un bien produce un sentimiento agradable. | |
9. | Quedan derogadas las Normas Generales de Procedimientos Disciplinarios de los estudiantes de la PUCP aprobadas en sesión del Consejo Ejecutivo de fecha 5 de noviembre de 1993 (art. 33) | |
10. | Ojalá Aristóteles no hubiera escrito textos de Lógica. |
Clasificación de Proposiciones:
Simples | Compuestas |
|
|
Ejemplos:
| Ejemplos:
|
Ejercicio 3: ¿Cuáles son proposiciones simples y cuáles compuestas?
1. | Arqueología y Antropología son dos carreras distintas | |
2. | No es necesario que lo digas porque ya lo sé | |
3. | Si Estados Unidos llega a Marte, (entonces) de seguro le cambiará el nombre. | |
4. | Sacar a pasear a pluto o darle un buen bife es la solución a mi problema. | |
5. | Si el dólar sube, nuestros ahorros se verán afectados. | |
6. | Pasada la medianoche se enfrentaron los Montesco y los Capuleto. | |
7. | El 13 de julio de 1788 una tormenta de granizo se desató sobre una gran parte de Francia central, desde Ruán en Normandía hasta un lugar tan meridional como Toulouse. | |
8. | Los alumnos preguntaron por qué no hay tres prácticas calificadas. | |
9. | Los alumnos no preguntaron por qué hay tres prácticas calificadas. | |
10. | En la acción del investigador se entremezclan ingenio, vocación, paciencia, agudeza y sencillez. | |
11. | Investigar, sea cual fuere la disciplina que cultivemos, es siempre una tarea interesante, sorprendente e interminable. | |
12 | No es que yo haya llegado tarde, sino que ustedes han venido muy temprano. |
EJERCICIO 3: Determina cuántas proposiciones simples hay y cuáles son las que aparecen en los siguientes textos. Considera también aquellas que formen parte de una proposición compuesta.
- Nada es más saludable que el ejercicio constante. Sin embargo, hay muchas personas que no tienen espíritu deportivo. Correr durante diez minutos y hacer algunos abdominales son maneras de empezar suavemente una rutina, ya que comenzar con una exigente puede hacerlos desistir muy pronto. ¡Ánimo! No se aburran, pongan algo de música o busquen algún amigo que quiera hacer lo mismo. Una vez que empiecen, no se detengan. El ejercicio constante es lo más saludable.
[pic 6]
- El español – por antonomasia, la lengua general en el mundo hispánico – es el denominador común de todas las hablas locales de España y América. El español es una abstracción o una entelequia y, por lo tanto, no se habla concretamente en ningún país, región o ciudad. Toda habla concreta, sea la de Madrid o la de Lima, la de Segovia o la de Piura, es – por definición – un habla local.[pic 7]
- Si Ud. reside en el Cono Sur, recuerde que este fin de semana se producirá un corte de suministro de agua potable en parte importante de esta área capitalina. Sedapal procederá al corte de suministro de agua potable para realizar trabajos de cambio de válvulas y empalme de tuberías, con el fin de mejorar el servicio de las Torres de Limatambo y el Cono Sur de Lima.
[pic 8]
- A pesar de ser zambo y de apellidarse López, quería parecerse cada vez menos a un zaguero de Alianza, y cada vez más a un rubio de Filadelfia. Pero no anticipemos. Precisemos que se llamaba Roberto, que años después se le conoció por Bobby; sin embargo, en los últimos documentos oficiales figura con el nombre de Bob. En su ascensión vertiginosa hacia la nada fue perdiendo en cada etapa una sílaba de su nombre.
Toda su tarea en los años que lo conocí consistió en dezambarse lo más pronto posible y en americanizarse antes de convirtirse para siempre, digamos, en un portero de banco o en un chofer de colectivo.
[pic 9]
Lenguaje Lógico Proposicional
Símbolos:
- Variables proposicionales: p, q, r, s, etc. (representan proposiciones)
- Operadores lógicos:
Negación | ~ p | No |
Conjunción | p ∧ q | y |
Disyunción | p ∨ q | o |
Condicional | p → q | si … entonces.. |
Bicondicional | p ↔ q | si y sólo si |
- Metavariables: A, B, C, etc. ( representan fórmulas lógicas: formulas bien formadas)
- Signos de agrupación y Puntos Auxiliares.
Reglas de construcción de fórmulas:
R1) Cada variable proposicional es fbf. |
R2) Si A es fbf, entonces ~ (A) es fbf también. |
R3) Si A y B son fbf, entonces: a) A ∧ B
|
R4) Una fórmula es fbf si y sólo si resulta de la aplicación de las reglas mencionadas. |
...