Regresión lineal
buburyTesis3 de Diciembre de 2013
1.179 Palabras (5 Páginas)289 Visitas
Regresión lineal
Para otros usos de este término, véase Función lineal (desambiguación).
Ejemplo de una regresión lineal con una variable dependiente y una variable.
En estadística la regresión lineal o ajuste lineal es un método matemático que modela la relación entre una variable dependiente Y, las variables independientes Xi y un término aleatorio ε. Este modelo puede ser expresado como:
: variable dependiente, explicada o regresando.
: Variables explicativas, independientes o regresores.
: Parámetros, miden la influencia que las variables explicativas tienen sobre el regresando.
donde es la intersección o término "constante", las son los parámetros respectivos a cada variable independiente, y es el número de parámetros independientes a tener en cuenta en la regresión. La regresión lineal puede ser contrastada con la regresión no lineal.
Métodos de mínimos cuadrados.
El procedimiento mas objetivo para ajustar una recta a un conjunto de datos presentados en
un diagrama de dispersión se conoce como "el método de los mínimos cuadrados". La recta
resultante presenta dos características importantes:
1. Es nula la suma de las desviaciones verticales de los puntos a partir de la recta de ajuste
∑ (Yー - Y) = 0.
2. Es mínima la suma de los cuadrados de dichas desviaciones. Ninguna otra recta daría
una suma menor de las desviaciones elevadas al cuadrado ∑ (Yー - Y)² → 0
(mínima).
El procedimiento consiste entonces en minimizar los residuos al cuadrado Ci²
Re emplazando nos queda
La obtención de los valores de a y b que minimizan esta función es un problema que se puede resolver recurriendo a la derivación parcial de la función en términos de a y b: llamemos G a la función que se va a minimizar:
Tomemos las derivadas parciales de G respecto de a y b que son las incógnitas y las igualamos a cero; de esta forma se obtienen dos ecuaciones llamadas ecuaciones normales del modelo que pueden ser resueltas por cualquier método ya sea igualación o matrices para obtener los valores de a y b.
Derivamos parcialmente la ecuación respecto de a
Primera ecuación normal
Derivamos parcialmente la ecuación respecto de b
Segunda ecuación normal
Los valores de a y b se obtienen resolviendo el sistema de ecuaciones resultante. Veamos el siguiente ejemplo:
En un estudio económico se desea saber la relación entre el nivel de instrucción de las personas y el ingreso.
EJEMPLO 1
Se toma una muestra aleatoria de 8 ciudades de una región geográfica de 13 departamentos y se determina por los datos del censo el porcentaje de graduados en educación superior y la mediana del ingreso de cada ciudad, los resultados son los siguientes:
CIUDAD : 1 2 3 4 5 6 7 8
% de (X)
Graduados : 7.2 6.7 17.0 12.5 6.3 23.9 6.0 10.2
Ingreso (Y)
Mediana : 4.2 4.9 7.0 6.2 3.8 7.6 4.4 5.4 (0000)
Tenemos las ecuaciones normales
∑y = na + b∑x
∑xy = a∑x + b∑x²
Debemos encontrar los términos de las ecuaciones
∑y, ∑x, ∑xy, ∑ x² Por tanto procedemos de la siguiente forma:
Y X XY X²
4.2 7.2 30.24 51.84
4.9 6.7 32.83 44.89
7.0 17.0 119.00 289.00
6.2 12.5 77.50 156.25
3.8 6.3 23.94 39.69
7.6 23.9 181.64 571.21
4.4 6.0 26.40 36.00
5.4 10.2 55.08 104.04
43.5 89.8 546.63 1292.92
Sustituyendo en las ecuaciones los resultados obtenidos tenemos: 43.50 = 8a + 89.8b
546.63 = 89.8a + 1292.92b
multiplicamos la primera ecuación por (-89.8) y la segunda por (8) así:
43.50 = 8a + 89.8b (-89.8) 546.63 = 89.8a + 1292.92b (8)
-3906.30 = -718.4a - 8064.04b 4373.04 = 718.4a + 10343.36b
466.74 = -0- 2279.32b
...