UNIDAD 3: Circuitos lógicos y digitales
cesar250full18 de Marzo de 2015
3.746 Palabras (15 Páginas)209 Visitas
UNIDAD 3: Circuitos lógicos y digitales
3-1 Introducción
Un Sistema es un conjunto de elementos que guardan una relación entre sí, a su vez un elemento del sistema puede ser otro sistema (subsistema). Los Sistemas se clasifican:
SISTEMAS
NATURALES
.
.
ARTIFICIALES
.
.
ELÉCTRICOS
.
.
ELECTRÓNICOS
ANALÓGICOS
DIGITALES
COMBINACIONALES
SECUENCIALES
Se concluye que un sistema digital es aquel cuyos elementos son digitales (sólo pueden adoptar valores discretos). En la Unidad 2 se llegó a la conclusión que la base 2, para la elección de un sistema de numeración, era la más adecuada desde el punto de vista de la confiabilidad y el costo. Por esta razón los Sistemas Digitales trabajan con elementos binarios (sólo pueden adoptar dos valores). Para poder realizar el estudio de los Sistemas Digitales se necesita estudiar una álgebra binaria. El Álgebra de George Boole, que data de 1854, es sin dudas la más apropiada para nuestro fin. Claude Shannon en 1938 adaptó esta álgebra para la aplicación en sistemas digitales.
Seguidamente se estudia el álgebra de Boole, las funciones booleanas, las compuertas lógicas, los Sistemas Combinacionales y, finalmente, los Sistemas Secuenciales.
3-2 Álgebra de Boole
3-2-1 Postulados y teoremas
Dentro de las álgebras de Boole, es de utilidad definir la bivalente, es decir compuesta por sólo dos elementos. Así, el álgebra es un conjunto de elementos binarios relacionados entre sí mediante las operaciones lógicas producto [.] y suma [+], que cumplen con los siguientes postulados (las letras a, b, c, etc., indican variables binarias):
1) Existe el elemento identidad
a + 0 = a
a . 1 = a
2) Las dos operaciones cumplen con la propiedad conmutativa
a + b = b + a
a . b = b . a
3) Propiedad distributiva
a . (b + c) = (a . b) + (a . c)
a + (b . c) = (a + b) . (a + c)
4) Complementación o inversión lógica
a + a’ = 1
a . a’ = 0
Algunos teoremas importantes son:
1) Dualidad: Toda igualdad lógica sigue siendo válida si se intercambian los operadores (+ y .) y los elementos de identidad (0 y 1). La simetría de los postulados demuestra este teorema.
2) El álgebra es un conjunto cerrado; es decir, los resultados de aplicar las operaciones lógicas a las variables, pertenecen al álgebra.
3) En el álgebra se cumple que
a + 1 = 1
a . 0 = 0
4) Ley de Idempotencia
a + a = a
a . a = a
5) Ley de involución
(a’)’ = a
6) Las operaciones lógicas son asociativas
a + (b + a) = (a + b) + c
a . (b . c) = a . (b . c)
7) Absorción:
a = a + (a . b)
a = a . (a + b)
8) Leyes de De Morgan
(a + b + c + d + .......+ n)’ = a’ . b’ . c’ . d’ ...........n’
(a . b . c . d .........n)’ = a’ + b’ + c’ + d’ + ..........+ n’
Con excepción del teorema 1, siempre aparecen dos expresiones, obsérvese que la segunda es la dual de la primera. Se recomienda al alumno demostrar estos teoremas en forma algebraica basándose en los postulados.
Aún cuando las operaciones + y . son distributivas entre sí, de ahora en más prescindiremos de los paréntesis que encierran los productos lógicos. Además el símbolo del producto no se indicará en lo sucesivo. De esta forma, por ejemplo, la expresión
a + (b . c) . (d + e)
se escribirá
a + b c (d + e)
3-2-2 Funciones lógicas
Una función lógica es una variable binaria que depende de otras variables binarias relacionadas entre sí por las operaciones lógicas. Una función lógica se nota de la siguiente manera:
f(a ,b ,c ,......., n) = {expresión lógica que involucra a las variables a ,b ,c , d,......, n}
La función adoptará el valor 0 o 1 de acuerdo a la expresión y al valor determinado de las variables. Por ejemplo:
f(a ,b, c) = a b’ + a c
Se trata de una función de tres variables a la cual le corresponde la siguiente Tabla de Verdad, ver figura 1. Puede decirse que la tabla de verdad es otra forma de expresar una función lógica.
C B A F(a, b, c)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1
Figura 1
3-2-2-1 Teoremas de funciones lógicas
8) En el Álgebra de Boole se cumple
F(a, b, c,.....n) = a f(1, b, c,....n) + a’ f(0, b, c,.....n)
Para demostrar esta igualdad basta con reemplazar a = 1 y a = 0 en la expresión y verificar que la misma se cumple en ambos casos. También, considerando que la función en cuestión no tiene restricciones, se puede decir que también es válida su dual:
F(a, b, c,.....,n) = [a + f(0, b, c, ....n)] [a’ + f(1, b, c,....n)]
Y se trata de una función cualquiera.
Este teorema posee corolarios muy útiles a la hora de simplificar (obtener una expresión más simple de la misma función) funciones (expresiones en general) lógicas. Se obtienen efectuando el producto miembro a miembro de la primera expresión por a o por a’, como se indica a continuación:
a f(a, b, c, ....n) = a [ a f(1, b, c, ....n) + a’ f(0, b, c,.....n)]
aplicando propiedad distributiva al segundo miembro, se obtiene:
a f(a, b, c, ....n) = a f (1, b, c, ....n) Primer Corolario
a’ f(a, b, c, ....n) = a’ [ a f(1, b, c, ....n) + a’ f(0, b, c,.....n)]
aplicando propiedad distributiva al segundo miembro, se obtiene:
a’ f(a, b, c, ....n) = a’ f (0, b, c, ....n) Segundo Corolario
Aplicando dualidad a los corolarios, se obtienen:
a + f(a, b, c, ...n) = a + f(0, b, c, ....n) Tercer Corolario
y
a’ + f(a, b, c, ...n) = a’ + f(1, b, c, ....n) Cuarto Corolario
9) Toda función lógica puede expresarse en forma canónica, es decir:
- Como una sumatoria de términos en los cuales aparecen todas sus variables en forma de producto lógico (estos términos se llaman MINTERMS)
- O como una productoria de términos en los cuales aparecen todas sus variables en forma de suma lógica (estos términos se llaman MAXTERMS).
En ambos casos la función se dice expresada en forma canónica y sus términos (ya sean minterms o maxterms se llaman términos canónicos).
Se demostrará este teorema para una función de dos variables f(a, b), luego se hará extensivo para n variables.
Aplicando el teorema 1 a f(a, b), se tiene:
F(a, b) = a f(1, b) + a’ f(0, b)
Aplicando nuevamente el teorema 1 a f(1, b) y a f(0, b), se tiene:
F(1, b) = b f(1, 1) + b’ f(1, 0)
F(0, b) = b f(0, 1) + b’ f(0, 0)
Reemplazando en la expresión inicial se obtiene
F(a, b) = a b f(1, 1) + a b’ f(1, 0) + a’ b f(0, 1) + a’ b’ f(0, 0)
Se observa entonces que toda función puede expresarse como una sumatoria de todos sus minterms, afectados cada uno de ellos por un coeficiente que consiste en el valor de la función (calculado reemplazando las variables por 1 o por 0 sí, en el minterm que acompaña, la variable correspondiente se encuentra directa o negada respectivamente).
Teniendo en cuenta que f(a, b) es una función cualquiera del álgebra de Boole, su dual también lo será, por lo tanto:
F(a, b) = [a + b + f(0, 0)] [a + b’ + f(0,1)] [a’ + b + f(1, 0)] [a’ + b’ + f(1, 1)]
Se observa entonces que toda función puede expresarse como una productoria de todos sus maxterms, afectados cada uno de ellos por un coeficiente que consiste en el valor de la función (calculado reemplazando las variables por 0 o por 1 sí, en el maxterm que acompaña, la variable correspondiente se encuentra directa o negada respectivamente).
La generalización de los resultados obtenidos para funciones de n variables, resulta evidente.
A fin de obtener una notación más sencilla de las funciones lógicas, se suele asignar a cada término canónico un número decimal que se obtiene dando pesos a las variables de acuerdo a sí las mismas se encuentran expresadas en forma directa o negada. El convenio es el siguiente:
VARIABLE PESO
A 1
B 2
C 4
D 8
E 16
F 32
---- -----
Figura 2
Si la variable aparece en forma negada, el peso asignado es cero.
Según el convenio entonces, el término canónico cualquiera a’ b c’ d correspondiente a un minterm de una función de cuatro variables, tendrá el número decimal 10.
El convenio mencionado permite una tercer forma, llamada compacta, de notar una función, a saber:
F(a, b, c,....n) = i=0, 2n-1) i f(i) = i=0, 2n-1) [(2n – 1 - i) + f(i)]
De la expresión anterior se deduce una regla para pasar de una función canónica en minterms a
...